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Abstract: In a recent paper, we analyzed the self-assembly of a complexcooperation net-1

work. The network was shown to approach a state, where every agent invests the same2

amount of resources. Nevertheless, highly-connected agents arise that extract extra-ordinarily3

high payoffs while contributing comparably little to any oftheir cooperations. Here, we in-4

vestigate a variant of the model, in which highly-connectedagents have access to additional5

resources. We study analytically and numerically whether these resources are invested in6

existing collaborations, leading to a fairer load distribution, or in establishing new collabo-7

rations, leading to an even less fair distribution of loads and payoffs.8
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Classification: PACS 89.75.Fb, 01.80.+b, 02.50.Le10

1. Introduction11

Cooperative interactions are ubiquitous in biology [1–4]. But, within the rich pool of examples,12

cooperation between humans stands out for several reasons:Humans are able to maintain different13

levels of cooperation with different, self-chosen partners and adapt these in response to their partners’14

behavior [5]. The level of cooperation depends on the embedding social structure, the partners’ social15
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positions, and on social norms such as the principle of fairness [6–9]. In almost all previous models16

of human cooperation, selectivity [10–15], social structure [16–20], and social norms [21–23] were17

imposed externally. While this reveals the direct impact of each of these factors, it cannot provide18

insights into their dynamical interplay.19

In a recent paper, we considered a model which allows agents to maintain different levels of coop-20

eration with different, self-chosen partners and adapt them in response to their partners’ behavior [24].21

This revealed that a high degree of social coordination can arise purely from the selective and adaptive22

interaction of self-interested agents even if no social norm is imposed externally: Although the agents23

possess little information, the system approaches a state in which every agent makes the same cooper-24

ative investment and every social interaction produces thesame benefit. We note that this coordination25

was not imposed externally; different levels of investmentevolved when the model was run multiple26

times from effectively identical initial conditions.27

Despite the emergent coordination of investments, the finalconfiguration is generally not fair. Al-28

though we started the model in an initially symmetric configuration which gave neither agent an advan-29

tage, some agents manage to secure positions of high centrality, where they interact with many other30

agents. In these positions, they receive significantly higher benefits than every other agent while making31

the same total investment. The system thus evolves into a state, where payoffs are unfairly distributed.32

The evolving network displays unfairness also in a second aspect. As highly connected agents spend33

the same amount of resources as every other agent, their contribution to any of their collaborations is34

necessarily small. So collaborating with a highly connected agent generally implies that one has to35

carry a large fraction of the investment. Thus, the existence of highly connected agents implies both,36

unfairness in the global payoff distribution and unfairness in the interaction-specific load distribution.37

In the present paper, we investigate if a fairer load distribution can be achieved if additional resources38

are available to agents of high centrality. We extend the model class studied in [24] by including that39

an agents success feeds back on his cooperative investments. We show that the additional feedback loop40

reduces the unfairness in the distribution of loads but intensifies the unfairness in the distribution of41

payoffs.42

The paper is organized as follows: We start with a short summary of the original model and outline the43

basic results. This will also give us the opportunity to introduce the conventions needed. We then include44

the additional feedback loop, discuss its effects on the emergence of coordination and differentiation and45

study the implications for fairness.46

2. Basic model47

Consider a population ofN agents engaged in bilateral interactions. The agents can for instance48

be people maintaining social contacts, scientists collaborating on some project, or companies entering49

business relationships. Every agent can invest time/money/effort into each of theN − 1 potential inter-50

actions with another agent. Furthermore theN2 − N individual amountseij, invested by agenti into51

the interaction with agentj can be adapted selectively, independently, and continuously by the agents.52

In other words, every agent is free to chose the amount of resources invested into the collaboration with53

every single other agent. Neither the total investment, northe structure of the collaboration network are54

imposed a priori.55
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One can imagine that over time the population approaches an equilibrium in which many potential56

interactions receive no investment, while others are reinforced, forming links in a complex network of57

cooperation. But, how will this network look like? How will the investments be distributed? And will58

the network be fair in the sense that all agents benefit in equal measure?59

Let us assume rational agents trying to maximize some payoff. A generic model for a single inter-60

action is the continuous snowdrift game [3]. In this game the payoff isP = B − C, whereB andC61

are non-linear functions. The benefit functionB depends on the sum of both investments while the cost62

functionC depends only on the investment of the agent under consideration. While we do not restrict63

B andC to specific functional forms, we assume thatB is sigmoidal andC is superlinear (see Fig.1).64

This captures basic features of real-world systems such as inefficiency of small investments, saturation65

of benefits, and additional costs incurred by overexertion of personal resources.66

In order to allow for multiple bilateral interactions per agent, let us extend the snowdrift game by

assuming that the benefits received add linearly, while the cost is a function of the sum of investments

made by an agent. The payoff received by agenti from the interaction with an agentj can then be written

as

Pij = B (eij + eji)−
eij

∑

k eik
C

(

∑

k

eik

)

,

where we have allocated a proportional share of the total cost incurred byi to the interaction withj. We

let the agents maximize their payoff dynamically in time by following a downhill-gradient approach

d

dt
eij =

∂

∂eij

∑

k

Pik, (1)

so that agents locally adapt their investments in the direction of the steepest incline of payoff.67

2.1. Coordination of investments68

In simulations the system shows frustrated, glass-like behavior; starting from a homogeneous initial69

configuration, in which all potential links are realized with identical investment plus a small stochastic70

fluctuation, the system approaches either one of a large number of different final configurations, which71

are local maxima of the total payoff. To describe these configurations, the following naming conventions72

are advantageous: Below, interactions which do receive no investments such thateij + eji = 0, will be73

denoted asvanishinginteractions. Non-vanishing interactions will be denotedas links. Further, a set74

of agents and the links connecting them are said to form a bidirectionally-connected community (BCC)75

if every agent in the set can be reached from every other agentin the set by following a sequence of76

bidirectional (reciprocal) links.77

In [24], it was shown analytically that all final configurations share certain properties. Thus, within78

every evolved BCC (i) every node makes the same total investment, and (ii) every link produces the same79

benefit. The properties (i) and (ii) are essential for a solution of the ODE system (1) to be stationary and80

stable (cf. Fig.1). They thus apply to all stable steady states.81
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Figure 1. (Reprinted from [24]) Adjustment of investments. Shown are the perceived cost

functionsC and benefit functionsB (insets) for the example of an agent i of degree one

interacting with an agent j of degree two (sketched). The functionB depends on the sum of

the agents investments into the interaction whileC depends on the sum of all investments

of the agent. In every equilibrium (SE or UE) stationarity demands that the slope of these

functions is identical. This requires that the agents make identical total investments. In sta-

ble equilibria (SE), the operating point lies in general above the inflection point (IP) ofB,

whereas equilibria found below the IP are in general unstable (UE). Therefore, in a stable

equilibrium both links produce the same benefit and both agents make the same total invest-

ment. Iterating this argument along a sequence of bidirectional links yields the coordination

properties (i) and (ii).
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Figure 2. Emergent heterogeneity in self-organized networks. In comparison to a random

graph (red), the degree distribution of networks evolved inthe basic model is relatively nar-

row (light blue), but broadens as cost reduction for successful agents is introduced (dark

blue). All simulations rely on the functionsB = 2ρ√
τ+ρ2

+
2(eij+eji−ρ)√
τ+(eij+eji−ρ)2

,C = µ (
∑

k eik)
2,

R = 1 + ν
∑

k B(eij + eji). Parameters are chosen to obtain networks with identical mean

degree (basic model:ρ = 0.1, τ = 0.124, µ = 2.731, adaptive modelρ = 0.395, τ = 0.1,

µ = 2.32, ν = 0.05). Results are averaged over 1000 networks of sizeN = 100.

2.2. Differentiation of payoffs82

The properties (i) and (ii) point to a remarkable degree of coordination inside a BCC. This coordina-83

tion results from the selective and adaptive interaction ofself-interested agents and is achieved although84

no agent has sufficient information to estimate the investment of any other agent in the network [24].85

Interestingly, the emergent coordination of investments does not necessarily imply that the evolving net-86

works are fair: Since all links in the BCC produce an identical benefit the total benefit received by an87

agent is proportional to his degree, i.e., to the number of his collaborations. Agents of high degree thus88

receive significantly higher benefits while making the same investment as every other agent.89

Figure2 shows a representative degree distributionpk specifying the relative frequency of nodes with90

degreek of an evolved network in the final state. Although agents follow identical rules and the network91

of collaborations is initially almost homogeneous, the distribution has a finite width indicating a certain92

heterogeneity. However, the distribution is narrower, andtherefore fairer, than that of an Erdös-Ŕenyi93

random graph, which constitutes a null-model for network topology.94

The emergence of the payoff disparity can be traced to the discrete nature of the links. As we reported95

above the local optimization carried out by the agents leadsboth to a coordination of investments in96

the links and to a local optimization of the total payoff. Fora given choice of parameters, the optimal97

payoff will be extracted if a certain number of collaborations exist in average per agent. However, the98

optimal total number of links is not necessarily commensurable with the number of agents and hence the99

maximal total payoff can only be extracted when the collaborations are distributed unfairly.100
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2.3. Imbalance in load distributions101

In order to sustain the extraction of high payoffs by agents with high degree, investments have to be102

redistributed across the network. While the transport of resources is not explicitly included in the model,103

it enters through the asymmetry of the individual interactions. Consider for instance an agent of degree104

one. This agent has to focus his investment on a single link. The partner participating in this link will105

therefore only need to make a small investment in the interaction to make it profitable. He is thus free to106

invest a large portion of his total investment into links to other agents of possibly even higher degree. In107

this way, investments flow toward regions of high connectivity where large payoffs are extracted.108

The most extreme case for an unequal load distribution within a cooperation is realized in unidirec-109

tional links. These correspond to interactions, in which one partners invests without any reciprocation.110

While the behavior of the exploited agent seems irrational, the analysis in [24] shows that it can arise in111

a population of rational self-interested agents. Simulations reveal that unidirectional investments are not112

even rare: Depending on the mean degree of the evolving network, up to 50% of all cooperative links113

can be unidirectional [24].114

3. Adaptive Model115

As shown above, the individual selection of eligible cooperation partners promotes the coordination116

of cooperative investments, the differentiation of received payoffs but also the emergence of unequal117

workloads within a cooperation. One can now argue that in thereal world successful agents have access118

to more resources, which could allow them to reciprocate more strongly in their collaborations, which119

would in turn lead to a fairer load sharing. Below, we study theeffect of an agent’s success feeding back120

on his cooperative investments. Including a benefit-dependent reduction ofC in the model yields a fully121

adaptive network [25].122

In our adaptive model, agents enjoy benefit-dependent cost reduction

Pij = B (σji)−
eij
Σi

C (Σi) ·
1

R (βi)
, (2)

whereσji := eij + eji, Σi :=
∑

k eik, andR is a monotonically increasing function of the total benefit123

of agenti βi :=
∑

k B (σik). As above, we assume the benefit functionB to be sigmoidal. Moreover, we124

assume the cost function to be super-linear and of the general form C (Σi) ∝ (Σi)
γ.125

Below, we show that in the adaptive model property (ii) still holds while property (i) needs to be126

modified: The total amount of investment differs among agents within a BCC as agents enjoy benefit-127

dependent cost reduction (Fig.3). However, we find that agents of the same degree approach thesame128

investment level. Consequently distinct classes of agents arise which differ both, in investment and in129

payoff.130

3.1. Coordination and Differentiation131

For deriving the modified coordination properties (i) and (ii) we proceed analogously to the non-132

adaptive case, i.e., we evaluate the conditions for a solution of the ODE system (1) to be stationary and133

stable.134
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Figure 3. Self-organized network evolved in the adaptive model. Nodes represent agents,

while each link represents a non-vanishing cooperative interaction. The small dash on the

link is a fairness indicator: the further it is shifted toward one agent, the lower is the fraction

of the total investment into the cooperation that he contributes. Nodes extracting more payoff

are shown in darker color and are placed toward the center of the community. The size of a

node indicates the total investment the agent makes. In the final configuration all links within

a BCC receive the same total investment and all nodes of the samedegree make the same

total investment. Simulation parameters:ρ = 0.7, τ = 0.1, µ = 2.24, ν = 0.588

First the stationarity condition. Defining∂x := ∂
∂x

, we can rewrite the stationarity condition

d

dt
eij = 0 = ∂eij

[

∑

k

B(σik)−
C(Σi)

R (βi)

]

(3)

as

∂eijB(σij) =
∂eijC(Σi)

R (βi)
− C(Σi)

(R (βi))
2 ∂βR (βi) ∂eijβ

=
R (βi)

(R (βi))
2 + ∂βR (βi)

∂eijC(Σi)

C(Σi)
, (4)

where we used∂eijβ = ∂eijB(σij). The right hand side of equation (4) does only depend on the node135

parametersΣi andβi, i. e., in a steady state∂eijB (σij) is identical for all bilateral linksij of agent136

i. From∂eijB(σij) = ∂ejiB(σij) it then follows that all bilateral links ofj, and, by iteration, that all137

bilateral links within one BCC are identical with respect to∂emn
B (σmn). Since the benefit function is138

sigmoidal, a given slope can be found in at most two points along the curve: one above and one below139

the inflection point (IP) (cf. Fig.1). This implies that if a stationary level of investment is observed in140

one link, then the investment of all other links of the same BCC is restricted to one of two operating141

points.142

In the basic model, stability analysis revealed that the operating point below the IP is unstable and can

thus be ruled out (cf. Fig.1). Unfortunately, in the extended model, the analysis cannot be performed to
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the same extend. However, in extensive numerical simulations we have not observed a single equilibrium

which contained a link operating below the IP. This stronglyindicates that the dynamics of the extended

model are governed by similar stability conditions as the dynamics of the basic model, which reproduces

property (ii):

σij ≡ σ ∀ links ij in a BCC. (5)

Combining Eqs. (4) and (5), we can now derive property (i): Let us consider a single BCC. According

to Eq. (5), the total benefit of an agenti in this BCC is a function of its degreedi:

βi =
∑

k

B (σik) = di ·B (σ) .

Inserting this relation in Eq. (4), we find that the left hand side is constant, while the first factor on the143

right hand side only depends ondi. The second factor on the right hand side is injective, as we assumed144

C (Σi) ∝ (Σi)
γ. It thus follows that nodes of the same degree have to make thesame total investment145

Σi, even if they are only connected through a chain of nodes making different investments. However,146

nodes of different degreedi can differ in their total investment.147

The emergence of distinct classes of nodes, which differ in degree (and therefore in payoff) and148

total investment is illustrated in Fig.3. The figure shows the final configuration of an exemplary model149

realization with 100 nodes. Nodes of high degree received high payoffs (coded in the node color) and150

run high total investments (coded in the node size).151

Compared to the basic model, the adaptive model leads to considerably broadened degree distributions152

(cf. Fig. 2). We can thus conclude that the additional resources available to high degree agents are at153

least in part used to establish additional links. This leadsto an increased income disparity in the evolving154

network.155

3.2. Fairness of load distribution156

Let us now address the fairness of individual interactions.As in the basic model, also in the adaptive157

model the investments of two interacting agents into a common collaboration are usually asymmetric.158

In Fig. 3, this is apparent in the position of the fairness indicatorson the links: The further it is shifted159

toward one agenti, the lower the fractioneij/σij that he contributes. Even in small network components,160

the fairness indicators reveal a flow of investments towardsregions of high connectivity; as a general rule161

high-degree nodes contribute less to an interaction than their lower-degree partner.162

In both, the basic and the adaptive model, the specific load distribution in an interaction depends163

on the exact topological configuration of the respective network component. Hence, for comparing the164

fairness of load distributions in both models, it is necessary to consider components of the same structure.165

The simplest degree-heterogeneous structure is a chain of three nodesi, j andk. In such a structure,

the two degree-one nodesi andk necessarily concentrate all their investment in the cooperation with the

middle nodej, while the latter splits its investment in equal parts. The fractionexj/σxj that the middle

node contributes to each of the two links can be calculated as

exj
σxj

=
0.5Σj

0.5(Σi + Σj + Σk)
, x = i, j .
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In the basic model, the total investment of all three nodes are identical. Thus,exj/σxj = 1/3. In the166

adaptive model,Σj > Σi = Σk. Thus,eij/σij > 1/3, i.e., the load distribution is fairer than in the basic167

model (cf. fairness indicators on three node chain in Fig.3).168

Generalizing the reasoning sketched above, we find that for any given topological configuration, the169

imbalance in the load distribution is milder in the adaptivemodel than in the basic model. We can thus170

conclude that the additional resources available to high degree agents are partly reinvested in existing171

links enhancing the fairness of the respective interactions.172

Further confirmation for fairer load distributions in the adaptive model comes from the numerical data:173

In extensive simulations using a wide range of parameters wehave not observed a single unidirectional174

link. This observation stands in sharp contrast to the observations made in the basic model, where175

unidirectional links - the most extreme case of unequal loaddistribution - constitute a considerable176

fraction of all links in a network.177

4. Summary178

In this paper, we have extended a recently studied model for the formation of cooperation networks by179

taking into account that an agent’s success feeds back on hiscooperative investments. Although agents180

have large freedom in their investment strategy and little information about investments of others we181

find that the adaptive as the basic model self-organizes toward configurations exhibiting a high degree182

of coordination: In all final configurations, bidirectionally connected communities approach a state in183

which the benefit produced by each link is identical and in which the total investment made by a agent184

is either identical (basic model) or falls into distinct classes (adaptive model).185

Despite coordination, both models display unfairness in two aspects: payoffs are unequally distributed186

in the population and loads are unequally distributed between cooperation partners. Both aspects can be187

traced back to the local payoff optimization governing the dynamics of the system. The optimization of188

payoffs implies an optimal number of links in the system. Thelatter, however, is usually incommensu-189

rable with the number of agents leading to configurations, inwhich some agents have more links, i.e., a190

higher degree, than others. In both versions of the model, agents of higher degree are found to extract191

more payoff and contribute less to a cooperation than their lower degree partners.192

In the adaptive model, cost reduction for successful agentsmakes additional resources available to193

highly-connected agents. These resources are partly invested in existing collaborations, leading to fairer194

load distributions, but also in establishing new collaborations, leading to broadened degree distributions.195

Let us emphasize that differentiation and emergence of unfairness in an initially homogeneous pop-196

ulation has previously been discussed in the context of the adaptive networks [26–28]. However, to our197

knowledge the here proposed framework is the first, in which the phenomena can be linked to details198

of the dynamic self-organization process. Our analysis hasgreatly profited from the dual nature of the199

model class under consideration. The continuous nature allowed for a model description in terms of200

ordinary differential equations and thus for an analysis with the tools of dynamical systems theory. On201

the other hand, the discrete, unweighted nature of the final configurations allowed us using the concepts202

of graph theory.203
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27. Zimmermann, M. G.; Egúıluz, V. M.;San Miguel, M.; Spadaro, A. Cooperation in an adaptive251

network.Adv. Complex Syst.2000, 3, 283–297.252
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