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Abstract: In a recent paper, we analyzed the self-assembly of a conecpleperation net-
work. The network was shown to approach a state, where eysEgtanvests the same
amount of resources. Nevertheless, highly-connectedsgase that extract extra-ordinarily
high payoffs while contributing comparably little to anytbiir cooperations. Here, we in-
vestigate a variant of the model, in which highly-connectgdnts have access to additional
resources. We study analytically and numerically whethes¢ resources are invested in
existing collaborations, leading to a fairer load disttibn, or in establishing new collabo-
rations, leading to an even less fair distribution of loaadig payoffs.
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1. Introduction

Cooperative interactions are ubiquitous in biolody4]. But, within the rich pool of examples,
cooperation between humans stands out for several reastmeans are able to maintain different
levels of cooperation with different, self-chosen pargn@nd adapt these in response to their partners’
behavior p]. The level of cooperation depends on the embedding sociattare, the partners’ social



16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

Version January 20, 2012 submitted@ames 20f11

positions, and on social norms such as the principle of éasr5—9]. In almost all previous models
of human cooperation, selectivitd(-15], social structure 16-20], and social normsZ1-23] were
imposed externally. While this reveals the direct impact afreof these factors, it cannot provide
insights into their dynamical interplay.

In a recent paper, we considered a model which allows agemtsintain different levels of coop-
eration with different, self-chosen partners and adapttheresponse to their partners’ behavia4].
This revealed that a high degree of social coordination c&e aurely from the selective and adaptive
interaction of self-interested agents even if no socialm@ imposed externally: Although the agents
possess little information, the system approaches a stathich every agent makes the same cooper
ative investment and every social interaction produces#mee benefit. We note that this coordination
was not imposed externally; different levels of investmevidlved when the model was run multiple
times from effectively identical initial conditions.

Despite the emergent coordination of investments, the @oafiguration is generally not fair. Al-
though we started the model in an initially symmetric confagion which gave neither agent an advan-
tage, some agents manage to secure positions of high dgntndiere they interact with many other
agents. In these positions, they receive significantly énidpgenefits than every other agent while making
the same total investment. The system thus evolves intde sthere payoffs are unfairly distributed.

The evolving network displays unfairness also in a secopddasAs highly connected agents spend
the same amount of resources as every other agent, therfbcioin to any of their collaborations is
necessarily small. So collaborating with a highly conngécgent generally implies that one has to
carry a large fraction of the investment. Thus, the existesfchighly connected agents implies both,
unfairness in the global payoff distribution and unfaisasthe interaction-specific load distribution.

In the present paper, we investigate if a fairer load distidm can be achieved if additional resources
are available to agents of high centrality. We extend theeholdiss studied in24] by including that
an agents success feeds back on his cooperative investménshow that the additional feedback loop
reduces the unfairness in the distribution of loads butniifees the unfairness in the distribution of
payoffs.

The paper is organized as follows: We start with a short sumofahe original model and outline the
basic results. This will also give us the opportunity todadlnce the conventions needed. We then include
the additional feedback loop, discuss its effects on thegemee of coordination and differentiation and
study the implications for fairness.

2. Basic model

Consider a population oV agents engaged in bilateral interactions. The agents caimstance
be people maintaining social contacts, scientists cotkiay on some project, or companies entering
business relationships. Every agent can invest time/mieffest into each of theV — 1 potential inter-
actions with another agent. Furthermore fli¢ — IV individual amounts:;;, invested by agentinto
the interaction with agent can be adapted selectively, independently, and contitybysthe agents.

In other words, every agent is free to chose the amount otiress invested into the collaboration with
every single other agent. Neither the total investmenttmestructure of the collaboration network are
imposed a priori.
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One can imagine that over time the population approachesgjaitibgium in which many potential
interactions receive no investment, while others are oec&d, forming links in a complex network of
cooperation. But, how will this network look like? How will ¢hnvestments be distributed? And will
the network be fair in the sense that all agents benefit inlegeasure?

Let us assume rational agents trying to maximize some payoffeneric model for a single inter-
action is the continuous snowdrift ganfd.[ In this game the payoff i = B — C, whereB andC
are non-linear functions. The benefit functiBrdepends on the sum of both investments while the cost
function C' depends only on the investment of the agent under consioleratvhile we do not restrict
B and(' to specific functional forms, we assume tliats sigmoidal and” is superlinear (see Fid).
This captures basic features of real-world systems suchedficiency of small investments, saturation
of benefits, and additional costs incurred by overexertigmeosonal resources.

In order to allow for multiple bilateral interactions peread, let us extend the snowdrift game by
assuming that the benefits received add linearly, while tis¢ is a function of the sum of investments
made by an agent. The payoff received by agémm the interaction with an ageptan then be written
as

€ij
Py = B (e + eji) — S en C (; €z‘k> ;
where we have allocated a proportional share of the totalicosrred byi to the interaction withy. We
let the agents maximize their payoff dynamically in time bildwing a downhill-gradient approach

d 0

O i

dtej 8617’ F
k

1)

so that agents locally adapt their investments in the doedf the steepest incline of payoff.
2.1. Coordination of investments

In simulations the system shows frustrated, glass-likeeln; starting from a homogeneous initial
configuration, in which all potential links are realized lwitlentical investment plus a small stochastic
fluctuation, the system approaches either one of a large aeuafldifferent final configurations, which
are local maxima of the total payoff. To describe these cardions, the following naming conventions
are advantageous: Below, interactions which do receivevestments such that; + ¢;; = 0, will be
denoted awanishinginteractions. Non-vanishing interactions will be deno#esdinks. Further, a set
of agents and the links connecting them are said to form aduitibnally-connected community (BCC)
if every agent in the set can be reached from every other agehe set by following a sequence of
bidirectional (reciprocal) links.

In [24], it was shown analytically that all final configurations sihaertain properties. Thus, within
every evolved BCC (i) every node makes the same total investiaued (ii) every link produces the same
benefit. The properties (i) and (ii) are essential for a smtubf the ODE systeml]) to be stationary and
stable (cf. Figl). They thus apply to all stable steady states.
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Figure 1. (Reprinted from 24]) Adjustment of investments. Shown are the perceived cost
functionsC' and benefit function®3 (insets) for the example of an agent i of degree one
interacting with an agent j of degree two (sketched). Thetion B depends on the sum of
the agents investments into the interaction whiilelepends on the sum of all investments
of the agent. In every equilibrium (SE or UE) stationarityr@nds that the slope of these
functions is identical. This requires that the agents mdkatical total investments. In sta-
ble equilibria (SE), the operating point lies in generahabthe inflection point (IP) of3,
whereas equilibria found below the IP are in general unstdbE). Therefore, in a stable
equilibrium both links produce the same benefit and both @geake the same total invest-
ment. Iterating this argument along a sequence of bidoeatilinks yields the coordination

properties (i) and (ii).
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Figure 2. Emergent heterogeneity in self-organized networks. Ingammson to a random
graph (red), the degree distribution of networks evolvethenbasic model is relatively nar-
row (light blue), but broadens as cost reduction for sudoésgents is introduced (dark
blue). All simulations rely on the functiond = \/iin \/ff(:i:e]’i)p)Q O = (X em)
R=1+v ), B(ej+ e;). Parameters are chosen to obtain networks with identicahme
degree (basic model = 0.1, 7 = 0.124, p = 2.731, adaptive modeb = 0.395, 7 = 0.1,

w = 2.32, v = 0.05). Results are averaged over 1000 networks of ize 100.
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2.2. Differentiation of payoffs

The properties (i) and (ii) point to a remarkable degree afrdmation inside a BCC. This coordina-
tion results from the selective and adaptive interactiosetdffinterested agents and is achieved although
no agent has sufficient information to estimate the investro€any other agent in the networR4].
Interestingly, the emergent coordination of investmemntssthot necessarily imply that the evolving net-
works are fair: Since all links in the BCC produce an identicahéfit the total benefit received by an
agent is proportional to his degree, i.e., to the number®tabilaborations. Agents of high degree thus
receive significantly higher benefits while making the samvestment as every other agent.

Figure2 shows a representative degree distribugipspecifying the relative frequency of nodes with
degreék of an evolved network in the final state. Although agentfelidentical rules and the network
of collaborations is initially almost homogeneous, thdrihbsition has a finite width indicating a certain
heterogeneity. However, the distribution is narrower, tratefore fairer, than that of an ErstRenyi
random graph, which constitutes a null-model for netwogotogy.

The emergence of the payoff disparity can be traced to tleeedesnature of the links. As we reported
above the local optimization carried out by the agents ldadbk to a coordination of investments in
the links and to a local optimization of the total payoff. Fogiven choice of parameters, the optimal
payoff will be extracted if a certain number of collaboratcexist in average per agent. However, the
optimal total number of links is not necessarily commenisigravith the number of agents and hence the
maximal total payoff can only be extracted when the collabons are distributed unfairly.
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2.3. Imbalance in load distributions

In order to sustain the extraction of high payoffs by agerntk hgh degree, investments have to be
redistributed across the network. While the transport ajusses is not explicitly included in the model,
it enters through the asymmetry of the individual interacs. Consider for instance an agent of degree
one. This agent has to focus his investment on a single litle gartner participating in this link will
therefore only need to make a small investment in the interato make it profitable. He is thus free to
invest a large portion of his total investment into links ther agents of possibly even higher degree. In
this way, investments flow toward regions of high connettiwihere large payoffs are extracted.

The most extreme case for an unequal load distribution wehtooperation is realized in unidirec-
tional links. These correspond to interactions, in whick partners invests without any reciprocation.
While the behavior of the exploited agent seems irratioha&l analysis in24] shows that it can arise in
a population of rational self-interested agents. Simaitaireveal that unidirectional investments are not
even rare: Depending on the mean degree of the evolving netwp to 50% of all cooperative links
can be unidirectional4].

3. Adaptive Model

As shown above, the individual selection of eligible cogpen partners promotes the coordination
of cooperative investments, the differentiation of reediypayoffs but also the emergence of unequal
workloads within a cooperation. One can now argue that imeaeworld successful agents have access
to more resources, which could allow them to reciprocateenstmongly in their collaborations, which
would in turn lead to a fairer load sharing. Below, we studydffect of an agent’s success feeding back
on his cooperative investments. Including a benefit-depencduction of”' in the model yields a fully
adaptive networkZ5].

In our adaptive model, agents enjoy benefit-dependent edsttion

1
.PZ]:B<UJZ)—€—]C X

whereoj; := e;; + €, ;:= Y, e, and R is a monotonically increasing function of the total benefit
of agent: ;:=> ", B (0;). As above, we assume the benefit functi®to be sigmoidal. Moreover, we
assume the cost function to be super-linear and of the gebemaC (3;) « (3;)”.

Below, we show that in the adaptive model property (ii) stdlds while property (i) needs to be
modified: The total amount of investment differs among ag@ithin a BCC as agents enjoy benefit-
dependent cost reduction (Fig). However, we find that agents of the same degree approadathe
investment level. Consequently distinct classes of agergs which differ both, in investment and in
payoff.

3.1. Coordination and Differentiation

For deriving the modified coordination properties (i) angl \fe proceed analogously to the non-
adaptive case, i.e., we evaluate the conditions for a solutf the ODE systenlj to be stationary and
stable.



Version January 20, 2012 submitted@ames 7of11

Figure 3. Self-organized network evolved in the adaptive model. Nagpresent agents,
while each link represents a non-vanishing cooperativeraation. The small dash on the
link is a fairness indicator: the further it is shifted towlame agent, the lower is the fraction
of the total investment into the cooperation that he coateb. Nodes extracting more payoff
are shown in darker color and are placed toward the centéileafdmmunity. The size of a
node indicates the total investment the agent makes. Inrtakcionfiguration all links within
a BCC receive the same total investment and all nodes of the dagree make the same
total investment. Simulation parameteps= 0.7, 7 = 0.1, p = 2.24, v = 0.588

e T
ra

First the stationarity condition. Defining, := %, we can rewrite the stationarity condition

_0— (%)
Erc 0 =0, ;B(mk) T R(B) (3)
as
N\ 861]'0(Ei) . C<Ez) '
PP = "Ry~ gy P 0l
_ R (5%) aemo(zz) (4)

(R(B))" +05R(5)  C(5)
s Where we used,, 3 = 0.,,B(0;;). The right hand side of equatiod)(does only depend on the node
1 parameters; andj3;, i. e., in a steady stat@.,; B (o0y;) is identical for all bilateral linksij of agent
w 4. Froma,, B(oy;) = 0., B(0;) it then follows that all bilateral links of, and, by iteration, that all
1s  bilateral links within one BCC are identical with respecitq,, B (0,.,). Since the benefit function is
130 Sigmoidal, a given slope can be found in at most two pointegtbe curve: one above and one below
1o the inflection point (IP) (cf. Figl). This implies that if a stationary level of investment issebved in
11 one link, then the investment of all other links of the same BE€@stricted to one of two operating
142 points.
In the basic model, stability analysis revealed that theaipey point below the IP is unstable and can
thus be ruled out (cf. Fidl). Unfortunately, in the extended model, the analysis cabhagerformed to

w
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the same extend. However, in extensive numerical simulstice have not observed a single equilibrium
which contained a link operating below the IP. This strongticates that the dynamics of the extended
model are governed by similar stability conditions as theeashlgics of the basic model, which reproduces
property (ii):

o;; = o Vlinksijina BCC. (5)

Combining Eqgs.4) and 6), we can now derive property (i): Let us consider a single BC@otding
to Eq. 6), the total benefit of an agentn this BCC is a function of its degreg:

Bi=> B(og)=di-B(o) .

Inserting this relation in Eq4), we find that the left hand side is constant, while the firstdaon the
right hand side only depends dn The second factor on the right hand side is injective, asssaraed
C (%) « (3;). It thus follows that nodes of the same degree have to maksatine total investment
Y.;, even if they are only connected through a chain of nodes mgattifferent investments. However,
nodes of different degre€ can differ in their total investment.

The emergence of distinct classes of nodes, which differeigree (and therefore in payoff) and
total investment is illustrated in Fi@. The figure shows the final configuration of an exemplary model
realization with 100 nodes. Nodes of high degree receivgh payoffs (coded in the node color) and
run high total investments (coded in the node size).

Compared to the basic model, the adaptive model leads tod=yabily broadened degree distributions
(cf. Fig.2). We can thus conclude that the additional resources &Naita high degree agents are at
least in part used to establish additional links. This lda@s increased income disparity in the evolving
network.

3.2. Fairness of load distribution

Let us now address the fairness of individual interactidssin the basic model, also in the adaptive
model the investments of two interacting agents into a comowlaboration are usually asymmetric.
In Fig. 3, this is apparent in the position of the fairness indicatorghe links: The further it is shifted
toward one agent the lower the fractiom;; /o;; that he contributes. Even in small network components,
the fairness indicators reveal a flow of investments toweggmns of high connectivity; as a general rule
high-degree nodes contribute less to an interaction theinltwer-degree partner.

In both, the basic and the adaptive model, the specific loaulilalition in an interaction depends
on the exact topological configuration of the respectivevogt component. Hence, for comparing the
fairness of load distributions in both models, it is necessaconsider components of the same structure.

The simplest degree-heterogeneous structure is a chaineaf hodes, j andk. In such a structure,
the two degree-one nodéandk necessarily concentrate all their investment in the cadjmer with the
middle nodej, while the latter splits its investment in equal parts. Tiaetione,;/o,; that the middle
node contributes to each of the two links can be calculated as

Caj 0.5

o - 0.5(3; + 3, + 3g)’ e
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In the basic model, the total investment of all three nodesidentical. Thuse¢,;/0,; = 1/3. In the
adaptive modely; > ¥, = ¥;. Thus,e;;/0;; > 1/3, i.e., the load distribution is fairer than in the basic
model (cf. fairness indicators on three node chain in Bg.

Generalizing the reasoning sketched above, we find thainfpgaen topological configuration, the
imbalance in the load distribution is milder in the adaptivedel than in the basic model. We can thus
conclude that the additional resources available to higltedeagents are partly reinvested in existing
links enhancing the fairness of the respective interastion

Further confirmation for fairer load distributions in theaptive model comes from the numerical data:
In extensive simulations using a wide range of parametersave not observed a single unidirectional
link. This observation stands in sharp contrast to the elasiens made in the basic model, where
unidirectional links - the most extreme case of unequal Idestribution - constitute a considerable
fraction of all links in a network.

4. Summary

In this paper, we have extended a recently studied moddiédiormation of cooperation networks by
taking into account that an agent’s success feeds back a@obperative investments. Although agents
have large freedom in their investment strategy and littfermation about investments of others we
find that the adaptive as the basic model self-organizesrtba@nfigurations exhibiting a high degree
of coordination: In all final configurations, bidirectiohatonnected communities approach a state in
which the benefit produced by each link is identical and inchtthe total investment made by a agent
is either identical (basic model) or falls into distinctsdas (adaptive model).

Despite coordination, both models display unfairness maspects: payoffs are unequally distributed
in the population and loads are unequally distributed betwsoperation partners. Both aspects can be
traced back to the local payoff optimization governing tigaamics of the system. The optimization of
payoffs implies an optimal number of links in the system. Tdiger, however, is usually incommensu-
rable with the number of agents leading to configurationg/hith some agents have more links, i.e., a
higher degree, than others. In both versions of the modehtagf higher degree are found to extract
more payoff and contribute less to a cooperation than tbeiet degree partners.

In the adaptive model, cost reduction for successful agemises additional resources available to
highly-connected agents. These resources are partlyt@t/esexisting collaborations, leading to fairer
load distributions, but also in establishing new collaltiorss, leading to broadened degree distributions.

Let us emphasize that differentiation and emergence ofinmefss in an initially homogeneous pop-
ulation has previously been discussed in the context ofdaptave networks6-28]. However, to our
knowledge the here proposed framework is the first, in whiehghenomena can be linked to details
of the dynamic self-organization process. Our analysisgneatly profited from the dual nature of the
model class under consideration. The continuous natuogvedl for a model description in terms of
ordinary differential equations and thus for an analysithwhe tools of dynamical systems theory. On
the other hand, the discrete, unweighted nature of the fordlgurations allowed us using the concepts
of graph theory.
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