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Abstract Studies of cooperation have traditionally focused on discrete games
such as the well-known prisoner’s dilemma, in which players choose between
two pure strategies: cooperation and defection. Increasingly, however, coopera-
tion is being studied in continuous games that feature a continuum of strategies
determining the level of cooperative investment. For the continuous snowdrift
game it has been shown that a gradually evolving monomorphic population
may undergo evolutionary branching, resulting in the emergence of a defector
strategy that coexists with a cooperator strategy. This phenomenon has been
dubbed the ‘tragedy of the commune’. Here we study the effects of fluctuating
group size on the tragedy of the commune and derive analytical conditions for
evolutionary branching. Our results show that the effects of fluctuating group
size on evolutionary dynamics critically depend on the structure of payoff func-
tions. This allows us to offer a general classification of games, elucidating when
fluctuating group size helps or hinders cooperation.
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1 Introduction

Cooperation is ubiquitous in nature, and the cooperative integration of lower-
level entities into higher-level units has been instrumental for the development
of life on earth (Maynard Smith and Szathmáry, 1995). While cooperation in
the broad sense only implies joint action, the term is often used more strictly to
describe situations in which cooperators help others at a cost to themselves.
These interactions are typically vulnerable to cheating and exploitation by
defectors that benefit without making costly cooperative contributions of their
own. Cheating and exploitation are observed in viruses (Turner and Chao,
2003), bacteria (Rainey and Rainey, 2003), yeast (Greig and Travisano, 2004),
amoebas (Buss, 1982; Dao et al, 2000; Strassmann et al, 2000), fish (Poulin
and Vickery, 1995), and humans.

The persistence of cooperation in the presence of cheaters is not obvious,
and at first glance it often appears as though the cheater rather than the
cooperator has a higher fitness. Indeed, the well-known tragedy of the com-
mons (Hardin, 1968) shows that even when cooperation is beneficial for the
group, selection acting on the individual level often eliminates cooperation al-
together. This has attracted significant scientific interest throughout the last
decades, with explanations proposed for the origin and maintenance of co-
operation falling into three main categories. First, kin selection (Hamilton,
1963, 1964, 1972) successfully explains many forms of cooperation among ge-
netically related individuals. Second, selection on the level of groups (Wilson,
1980; Wilson and Dougatkin, 1997), through which subpopulations with non-
cooperative individuals are at a reproductive disadvantage, promotes coopera-
tion under certain conditions. Third, direct, indirect, or network reciprocation
has been shown to foster cooperation (Trivers, 1971; Axelrod and Hamilton,
1981; Axelrod, 1984), even though the reliance of reciprocation on memorizing
past behavior makes it applicable mainly to higher organisms. These mecha-
nisms are further discussed in Nowak (2006).

Most game-theoretical studies of cooperation fall into the third category
described above and revolve around a game known as the prisoner’s dilemma
(Axelrod and Hamilton, 1981). The classic variant of this game is played by
two players choosing between two pure strategies, cooperation or defection,
but the game can be generalized to an arbitrary number of players (Kagel
and Roth, 1995; Doebeli and Hauert, 2005) and to continuous degrees of co-
operative contributions (Mar and Denis, 1994; Killingback et al, 1999). In the
latter case, the cooperative contribution varies continuously and is represented
by a real number r1. The payoff for an r1-strategist facing an r2-strategist
is B(r2) − C(r1), where B and C are smooth and increasing functions that
quantify the benefits and costs of cooperative contributions. Since cooperative
investments do not directly benefit the acting individual, defection is the ra-
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tional choice when the game is played only once. In many cases, however, it
is more reasonable to assume that all players benefit equally from cooperative
contributions. For example, the digestive enzymes produced by a cell of the
yeast Saccharomyces cerevisiae can be used by all nearby cells, including the
producing cell itself (Gore et al, 2009). Likewise, while the stalk produced by
the amoeba Dictyostelium discoideum can be exploited by cheaters, it also
vitally benefits the cooperators. Further examples of processes resulting in
shared benefits are cooperative hunting, vigilance behavior, group foraging,
and parental care (Kun et al, 2006). Situations where individuals directly ben-
efit from cooperative acts that they perform can be described by the snowdrift
game (Sugden, 1986), synonymously known as the hawk-dove game (Maynard
Smith, 1982) or chicken game (Rapoport, 1966).

To better understand the evolution of cooperation and defection when all
players are benefiting from cooperative contributions, Doebeli et al (2004)
studied the snowdrift game with continuous investments. In this game, the
payoff of an r1-strategist facing an r2-strategist is B(r1 + r2) − C(r1), where
the functions B and C are chosen so that cooperation is better than defection
in groups of defectors, but defection is advantageous in groups of cooperators.
Consequently, cooperation in the snowdrift game always develops to some de-
gree. However, assuming small mutations in continuous cooperative contribu-
tions, Doebeli et al (2004) showed that this gradual buildup of cooperation was
sometimes followed by the emergence of cheaters with little or no cooperative
contribution, while the remaining cooperators became even more cooperative.
Similar results have been obtained by Brännström and Dieckmann (2005) in
the context of the social amoeba Dictyostelium. When starvation is imminent,
one or several strains of the amoeba aggregate to form fruiting bodies that
enable spore dispersal (Raper, 1984; Fortunato et al, 2003). A strain, however,
may forego investing into the stalk of the fruiting body and instead take a free
ride on the investments of other strains. Brännström and Dieckmann (2005)
modeled this process with spores as players and strains as strategies. In this
model, the payoff of an r1-strategist facing an r2-strategist is multiplicative,
B(r1 + r2)C(r1), with B an increasing and C a decreasing function of cooper-
ative contributions. They showed that fluctuation in player numbers resulted
in evolutionary branching and in the subsequent emergence and coexistence
of low-investing cheaters and high-investing cooperators.

The work of Doebeli et al (2004) and Brännström and Dieckmann (2005)
shows that selection on levels of cooperative investments need not always be
stabilizing. Rather, initially monomorphic populations evolving in cooperation
games may experience disruptive selection, resulting in evolutionary branching
and the emergence of dimorphic evolutionary outcomes in which low-investing
and high-investing individuals coexist. Doebeli et al (2004) investigated this
evolutionary phenomenon, which they dubbed the tragedy of the commune,
for games played in two-player groups. However, in many situations it is more
natural to expect that interactions take place in groups of fluctuating size, for
example, as a consequence of abstaining or of local interactions coupled with
dispersal or movement. Since environmental fluctuations have been shown to
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Fig. 1 Individual-based simulations of a multi-player version of the continuous investment
game proposed by Doebeli et al (2004). Parameters used here are identical to those used in
Fig. 1A of Doebeli et al (2004). (a) The game played as a two-player game. Evolutionary
branching leads to the emergence of cheaters, a characteristic process Doebeli et al (2004)
dubbed the tragedy of the commune. (b) The game played with a random number of players
(interactions taking place between either 1 or 3 players with equal probability). Although the
average number of players is the same as before, evolutionary branching does not occur, and
hence the tragedy of the commune is avoided. Note that although games with 1 player may
seem odd, specific examples often allow a natural interpretation, e.g. single-clone aggregation
in the case of Dictyostelium.

promote the coexistence of competing populations (Hutchinson, 1961) and to
facilitate evolutionary branching in some models, such as the site-based model
studied by Geritz et al (1998), one might expect that fluctuating group size
would render the tragedy of the commune more likely. This, however, need
not be the case. Figure 1 shows a multi-player extension of a game considered
by Doebeli et al (2004), in which players interact in randomly formed groups
that change between each interaction. When the size of these groups changes
significantly from one interaction to the next, the tragedy of the commune no
longer occurs.

The aim of this paper is to explore the evolutionary consequence of fluctu-
ating group size for cooperation games. We first define a large class of games
that includes the snowdrift game considered by Doebeli et al (2004), the Dic-
tyostelium model conceived by Brännström and Dieckmann (2005), the pris-
oner’s dilemma, the stag hunt game, and other public goods (joint effort)
games. For this class of games, we explore the evolutionary consequences of
fluctuating group size for the establishment of cooperation and the tragedy of
the commune.

2 Cooperation games with fluctuating group size

In this section we first explain why fluctuation in the size of groups of inter-
acting players is generically expected in nature. We then introduce a class of
cooperation games with continuous investments that incorporate fluctuating
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Fig. 2 Two examples of processes giving rise to fluctuations in the size of groups of inter-
acting players. (a) Movement of individuals in conjunction with infrequent local interactions
between nearby individuals give rise to games where groups are formed through contiguous
overlap of interaction zones. (b) Players distributed over an area with interactions occurring
among those players that occupy the patches marked with grey. A specific example is the
dispersal of spores or seeds over an area containing many disconnected patches of suitable
habitat.

group size. From the demographic dynamics resulting from the games in this
class we determine the initial growth rate of a rare mutant strategy. This lays
the foundation for our analysis of the evolutionary dynamics of cooperative
investments. Finally, we describe the potential outcomes of gradual evolution
in a monomorphic population with at most one interior singular strategy.

2.1 Fluctuating group size

Figure 2 depicts two situations in which variation in group size naturally oc-
curs. First, movement and infrequent interactions between proximate players
leads to a class of games where groups are formed through contiguous overlap
of interaction zones. Though Fig. 2a depicts binary interactions, the interac-
tion strength in general depends on factors such as distance between players.
Second, Fig. 2b shows how a game is formed when players are repeatedly
distributed onto patches of different sizes, giving rise to distinct groups of
interacting players. Significant variation in patch size here leads to a wide dis-
tribution of the number of players in a group. This situation arises, for exam-
ple, when spores or seeds are dispersed over an area with fragmented patches
of suitable habitat. Our analysis will encompass both situations depicted in
Fig. 2.

2.2 Payoffs in cooperation games

When a group of k players has been formed, we assume that each player
contributes an amount or effort ri towards the group’s total effort r1 + . . . +
rk. The contribution ri is the strategy or trait value of a player and may
optionally be constrained to an interval, e.g. 0 ≤ ri ≤ 1. We assume that
the payoff P (ri, rs, k) for a focal individual playing strategy in a group of
players with strategies may depend on the focal player’s own contribution ri,
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on the focal player’s share of the total effort, rs = (r1 + . . . + rk)/k, and on
the number of individuals k in the group. By choosing P appropriately, we
can recover all traditionally studied cooperation games. For example, the two-
player prisoner’s dilemma is obtained by choosing P (ri, rs, k) = B(krs − ri)−
C(ri) with increasing functions B and C, and the public goods (joint effort)
game by choosing P (ri, rs, k) = mrs − ri with a positive factor m.

We call a payoff function additive or multiplicative if, respectively, the ef-
fects of the first two arguments can be separated additively, P (ri, rs, k) =
PB(rs, k) + PC(ri, k), or multiplicatively, P (ri, rs, k) = PB(rs, k)PC(ri, k).
These two different types of payoff will play an important role in Sect. 3
when we examine the effect of fluctuating group size on the tragedy of the
commune. When players pay a cost for making a cooperative contribution and
benefit from their group’s total effort, it is natural to assume that the payoff
P decreases with ri and increases with rs,

P1 (ri, rs, k) ≤ 0 and P2 (ri, rs, k) ≥ 0, (1)

where the use of subindex in P1 and P2 denote the derivatives of the function
with respect to its first and second argument respectively. Since this assump-
tion is not needed for most of arguments below, it will be invoked only when
analyzing the sign of mixed derivatives of multiplicative payoff functions.

2.3 Demographic dynamics in cooperation games

Based on the general specification of payoffs for players participating in coop-
eration games provided above, we now introduce the resultant demographic
dynamics describing how player abundances change over time. For this we
assume that, in successive generations, players are randomly distributed into
groups of different size. The probability that an individual joins a game with k
participants is pk = kqk/〈k〉, where qk is the fraction of groups with k players
and 〈k〉 =

∑∞
k=1

kqk is the average number of players in a group. Individ-
uals then interact within the group and produce offspring in proportion to
the payoff received. Survival to the next generation is density-dependent, but
independent of trait values. Under these assumptions, the per capita growth
rate of an initially rare mutant strategy m in an environment dominated by
players with resident strategy r is

f(r, m) =

∞
∑

k=1

pk

(

P

(

m,
m + (k − 1)r

k
, k

)

− P (r, r, k)

)

. (2)

In adaptive dynamics theory, this quantity is known as invasion fitness (Metz
et al, 1992). Equation (2), the derivation of which is provided in Appendix A,
allows us to study the long-term evolution of trait values under mutation and
selection (Metz et al, 1996; Dieckmann and Law, 1996; Geritz et al, 1998) and
forms the foundation of our analysis of evolutionary dynamics in Sect. 3.
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Fig. 3 Classification of potential outcomes of gradual evolution in a monomorphic pop-
ulation with no interior singular strategy and one interior singular strategy. If no singular
strategy exists (panels a and b), the system approaches the limit of low cooperation (panel a)
or high cooperation (panel b). Convergence stable strategies allow for stationary dynamics
at intermediate levels of cooperation if selection is stabilizing, or lead to dimorpohic pop-
ulations (c.f. Fig. 1a) if selection is distributive (panel c). A singular strategy which is not
convergence stable separates two basins of attraction for high and low cooperative invest-
ment respectively (panel d). Horizontal lines represent the level of cooperative investment
and vertical lines boundary restriction, i.e. the minimum or maximum allowed cooperative
investment. Circles represent singular strategies where directional selection ceases. Filled
circles represent convergence stable singular strategies. The dashed lines beneath panels b
and d indicates whether selection is stabilizing or disruptive.

2.4 Evolutionary dynamics in cooperation games

When mutational steps are small and rare, resident communities will succes-
sively be replaced by invading mutants with similar strategies and positive
invasion fitness. Driven by directional selection, this process eventually ceases
when evolution reaches a boundary strategy at which constraints prevent fur-
ther evolution or at an interior strategy at which selection pressures vanish.
Strategies of the latter type are called evolutionarily singular; in their vicinity,
an initially monomorphic population may experience disruptive selection and
thereby become dimorphic. Figure 1 illustrates how directional selection leads
to a singular strategy at which selection is either disruptive (left panel) or
stabilizing (right panel).

Assuming at most one interior singular strategy, there are only a finite
number of qualitatively different possibilities for the evolutionary dynamics
of a monomorphic population with individuals characterized by a single trait
value. Figure 3 shows the relevant non-degenerate evolutionary outcomes. In
Fig. 3a and 3c, gradual evolutionary change leads to a monomorphic popula-
tion of full defectors (tragedy of the commons) or full cooperators respectively.
This is also the case in Fig. 3d, but here the outcome depends on the initial
condition (see e.g. Sumpter and Brännström, 2008). In Fig. 3b, gradual evo-
lution will lead to cooperative investments near the interior singular strategy
where selection can be stabilizing, resulting in an evolutionarily stable strat-
egy. If selection is disruptive, however, the population will eventually become
dimorphic (tragedy of the commune).



8

3 Evolutionary consequences of fluctuating group size

The initial growth rate of a rare mutant player with strategy m in an envi-
ronment dominated by players with strategy r, (2), allows us to study the
long-term consequences of small mutations and natural selection (Metz et al,
1996; Dieckmann and Law, 1996; Geritz et al, 1998). Below we assume that
mutational steps are small and investigate the effect of fluctuating group size
on the evolutionary of cooperation.

3.1 Consequences for cooperative investments

The selection gradient g(r) = ∂
∂m

, being the derivative of the invasion fit-
ness evaluated at m = r, contains information about which nearby strategies
can invade a monomorphic population of players with cooperative investment
r. When the selection gradient is positive (negative) more (less) cooperative
strategies can invade. An invading strategy generically replaces the resident
strategy and the population again becomes monomorphic (Geritz, 2005; Geritz
et al, 2002). From (2) we derive the following expression for the selection gra-
dient,

g(r) = 〈k〉−1

∞
∑

k=1

kqk

[

P1(r, r, k) +
1

k
P2(r, r, k)

]

,

where P1 and P2 as before denote the derivative of P with respect to the first
and second argument respectively. In this expression 〈k〉 is the average number
of players in a group, and qk is the probability that a group with k players is
formed. Writing gk(r) for the selection gradient with a fixed group size of k
players we have,

gk(r) =

[

P1(r, r, k) +
1

k
P2(r, r, k)

]

. (3)

We now introduce ϕk(r) = kgk(r) so that we can apply Jensen’s inequality,
stating that the average of a convex function evaluated at various arguments
is always larger or equal to that function evaluated at the average argument.
Thus, if ϕk(r) is convex (accelerating) as a function of k, then

g(r) = 〈k〉−1

∞
∑

k=1

qkϕk(r) ≥ 〈k〉−1ϕ〈k〉(r) = g〈k〉(r).

Thus, in this case, cooperation will be established more rapidly and reach
higher levels when the group size of interacting players is variable, than when
games are played in groups with a fixed size of 〈k〉 players. If ϕk(r) is concave
(decelerating) seen as a function of k whenever qk > 0 then the opposite is
true: fluctuations in player numbers reduces cooperative development. With
boundary conditions, fluctuations in group size can move singular strategies
in or out of the allowed set of cooperative strategies, and thus prevent the
evolution of cooperation altogether. However, in the following we show that
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when the payoff depends only on the player’s cooperative contribution and
share of the common investment, the selection gradient is unchanged by fluc-
tuating group size as long as the average number of players in a group remain
constant.

3.2 Consequences for the tragedy of the commune

We now study the effect of fluctuating group size on the evolutionary dynamics,
in particular the tragedy of the commune, near singular strategies for games
where the payoff does not explicitly depend on group size, i.e.

P

(

ri,
r1 + . . . + rk

k
, k

)

= P

(

ri,
r1 + . . . + rk

k

)

. (4)

For these games, the selection gradient vanishes for a strategy r∗ whenever

〈k〉P ∗
1

= −P ∗
2
, (5)

where P ∗
i = Pi(r

∗, r∗) is the payoff P differentiated with respect to argument
i and then evaluated at r = m = r∗. Since the only statistic of the distribution
qk that appears in (5) is the average number of players, fluctuating group size
does not have any effect on the location of the singular strategies.

To understand the evolutionary dynamics of a monomorphic populations
with strategy value close to the singular strategy r∗ we need to know whether
the strategy is convergence stable (nearby monomorphic populations evolve
toward r∗), and whether it is evolutionarily stable (selection is stabilizing
rather than disruptive). Near a strategy which is convergence stable but not
evolutionarily stable, a monomorphic population experiences disruptive selec-
tion and will eventually become dimorphic through evolutionary branching.
In Appendix B we show that the singular strategy r∗ is convergence stable if

〈k〉P ∗
11

+ (1 + 〈k〉)P ∗
12

+ P ∗
22

< 0, (6)

where P ∗
ij is the payoff P differentiated twice, first with respect to argument i

and then to argument j, and evaluated at r = m = r∗. The singular strategy
is not evolutionarily stable if

〈k〉P ∗
11

+ 2P ∗
12

+ 〈k−1〉P ∗
22

> 0, (7)

where

〈k−1〉 =

∞
∑

k=1

qk

k
.

We will henceforth use 〈k−1〉 as a measure of the fluctuations in group size.
It ranges from 1/〈k〉 when a group of players always have the same size, to a
maximal value of 1 which we will refer to as maximum variation in group size.
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Fig. 4 Evolutionary dynamics near the singular strategy r∗ for combinations of P ∗

11
and

P ∗

22
(second derivatives of the payoff function evaluated at the singular strategy) with fixed

number of players (left panel) and variable number of players (middle and right panels). The
dark gray area consists of the points (P ∗

11, P ∗

22) for which the singular strategy is convergence
stable, (6), but not evolutionarily stable, (7), i.e. for which evolutionary branching eventually
occurs. a) A multiplayer extension of the game considered by Doebeli et al (2004). The
regions and the marker correspond to the parameters used to generate Fig. 1. The payoff P

is additive (8) and consequently sufficient variation prevents evolutionary branching (middle
and right panel). b) The Dictyostelium model. The regions and the marker correspond to
parameters used by Brännström and Dieckmann (2005). The effect of the arguments in the
payoff can be separated multiplicatively (9), and evolutionary branching does not occur
without fluctuating group size.

3.2.1 Additive payoffs

We now analyze the special case where the effect of the two arguments in the
payoff function can be seperated additively,

P

(

ri,
r1 + . . . + rk

k

)

= B

(

r1 + . . . + rk

k

)

− C(ri). (8)

In cooperative games, B and C can be interpreted as the benefit and cost
of a cooperative investment, respectively. Here the conditions in (1) means
simply that both B and C are increasing functions. The separability between
arguments implies that P ∗

12
= 0 and it follows from (6) that the region of values

in which P ∗
11

and P ∗
12

must lie for which the singular strategy is convergence
stable consists of the points above the line

P ∗
22

= −〈k〉P ∗
11

,
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which is unaffected by variation in the number of players. The region for which
the singular strategy is not evolutionarily stable, (7), is given by the points
below the line

P ∗
22

= −
〈k〉

〈k−1〉
P ∗

11
.

Here, the slope of the line defining the boundary of evolutionary stability
changes from −〈k〉2 to −〈k〉 as fluctuations in group size increase. This is
shown in the three panels of Fig. 4a. The singular strategy r∗ determines the
values P ∗

11
and P ∗

22
that define a point in the plane. Evolutionarily branching,

and hence the tragedy of the commune, eventually occurs when the singular
point is convergence stable but not evolutionarily stable. This corresponds in
Fig. 4a to the region marked with grey. Since this region lies exclusively in
the fourth quadrant where P ∗

11
= −C′′(r∗) > 0 and P ∗

22
= B′′(r∗) < 0 it

follows immediately that the tragedy of the commune can only occur when
both the benefit, B, and the cost, C, are concave in a neighborhood of the sin-
gular point. Furthermore, we see that with additive payoffs fluctuating group
size always reduces the parameter range in which evolutionary branching–and
hence the tragedy of the commune–occurs. As the fluctations increase, any
point in the plane, including the marker which corresponds to the game stud-
ied by Doebeli et al (2004) (see also Fig. 1), eventually falls outside the region
where evolutionary branching occurs. Hence, when the payoff is additive, the
tragedy of the commune can always be avoided with sufficient fluctuation in
group size.

In summary we have shown that in games with additive payoffs, or more
generally in games with P ∗

12
= 0, fluctuations in group sizes generally reduce

the parameter space where the tragedy of the commune can occur.

3.2.2 Multiplicative payoffs

For non-additive games the situation is considerably different, as illustrated
by the Dictyostelium model conceived by Brännström and Dieckmann (2005).
In this model the payoff is multiplicative,

P

(

ri,
r1 + . . . + rk

k

)

= B

(

r1 + . . . + rk

k

)

C(ri). (9)

Using an exponentially increasing function for the benefit and a linearly de-
creasing function for the cost, Brännström and Dieckmann (2005) derived an
analytical condition showing that evolutionary branching only occurs with
fluctuating group size. Fig. 4b shows why fluctuating group size is required.
The slopes of the lines are the same as for additive games, but the line with
constant slope now intersects the P ∗

22
-axis at the point −(1+〈k〉)P ∗

12
while the

remaining line intersects at −2P ∗
12

/〈k−1〉. The effect that fluctuating group size
has thus depends on the sign of P ∗

12
. For multiplicative payoffs, P ∗

12
is negative

since P ∗
12

= B′(r∗)C′(r∗) < 0. With no fluctuations in group size, the region
where evolutionary branching occurs lies entirely in the fourth quadrant. As
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the fluctuations increase, the point of intersection −2P ∗
12

/〈k−1〉 decreases from
−〈k〉2P ∗

12
to −〈k〉P ∗

12
, which is below −(1 + 〈k〉)P ∗

12
. Thus, Brännström and

Dieckmann (2005) did not find evolutionary branching without fluctuations
in group size because they used a linear cost function. For sufficiently small
values of P ∗

22
, evolutionary branching cannot occur without fluctuating group

size.
The case P ∗

12
> 0 is similar to additive games. In particular, sufficient

fluctuation in group size will always prevent evolutionary branching and hence
avoiding the tragedy of the commune.

3.3 Classifying the consequences of fluctuating group size

The preceding analysis shows that the sign of P ∗
12

has a profound impact on the
evolutionary dynamics. When P ∗

12
≥ 0 fluctuations in the number of players

always reduces the parameter region for which evolutionary branching takes
place, but when P ∗

12
< 0 other outcomes are possible. To better understand

the effect of fluctuating group size we combine inequalities (6) and (7), giving
the following condition for the singular strategy to be convergence stable but
not evolutionarily stable:

〈k〉P ∗
12

+ P ∗
22

< −〈k〉P ∗
11

− P ∗
12

< P ∗
12

+ 〈k−1〉P ∗
22

. (10)

Here only the term to the right changes with the degree of fluctuation in group
size. It follows that a necessary condition for evolutionary branching when the
number of players is fixed is

〈k〉P ∗
12

+ P ∗
22

< P ∗
12

+
1

〈k〉
P ∗

22
. (11)

Writing A = 〈k〉P ∗
12

+ P ∗
22

and B = P ∗
12

+ 〈k〉−1P ∗
22

for the left and right
hand side respectively, we can classify a game according to whether evolu-
tionary branching is possible without variation in group size (A > B) or not
(A < B). With maximum fluctuation in the number of players, we have the
corresponding necessary condition,

〈k〉P ∗
12

+ P ∗
22

< P ∗
12

+ P ∗
22

,

which simplifies to P ∗
12

< 0. Thus, we may further classify a game according to
whether evolutionary branching is possible with maximal fluctuation in group
size. Fig. 5 shows a graphical representation of the classifications. For each
case, the range of values where the middle point of inequality (10) must lie
for evolutionary branching to occur is plotted as a function of the degree of
fluctuation in group size. When P ∗

12
< 0, which is the case for games with

multiplicative payoffs, the effect that fluctuating group size group size has
depends on whether condition (11) also holds. If it does not hold, fluctuating
group size always reduces the region where evolutionary branching occurs. If
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it does hold both outcomes are possible, and to distinguish between the two
we need to check whether

P ∗
12

+ 〈k−1〉P ∗
22

< P ∗
12

+ P ∗
22

,

which is the case if P ∗
22

> 0. In this case fluctuations in group size reduces the
parameter range for which evolutionary branching occurs. If instead P ∗

22
< 0,

fluctuations in group size promotes evolutionary branching.
For additive games P ∗

12
= 0 and we infer from Fig. 5 that fluctuations in

the number of players always reduces the region where evolutionary branching
occurs, consistent with the conclusions in Sect. 3.2.1.

4 Conclusions

Fluctuations are an inherent feature of population dynamics. In this paper we
have studied the effect of fluctuating group size on the evolution of strate-
gies in a large class of cooperative games. We have shown that, under rather
general conditions, fluctuations in group size affect directional selection and
hence the level of cooperative investment. To investigate the stability of sin-
gular strategies we have considered payoffs which do not explicitly depend
on group size (4). For this class of games we have derived analytical criteria
for the stability of singular strategies, showing that fluctuations in group size
significantly affects the likelihood of evolutionary branching. Taken together,
our results show that fluctuations in the size of groups of interacting individ-
uals are potentially important for understanding both the classical tragedy of
commons, and the tragedy of the commune.

A canonical assumption in models of cooperation is that the payoff can be
written as a difference of a benefit function and a cost function. By applying
the general criteria we have shown that sufficient fluctuations in group size
can prevent evolutionary branching in these games. Fluctuations in group size
promotes evolutionary branching only if the marginal gain to an individual
for reducing its investment while keeping the total group investment constant
increases with the size the group’s investment (P ∗

12
< 0 in the notation of

Sect. 3). Moreover, the marginal cost to an individual for increasing its own
investment while the group’s investment remains constant must increase with
the individual’s investment, or at least only gradually decrease (P ∗

11
< ǫ for

a small positive ǫ), as otherwise fluctuations in group size will reduce the
potential for evolutionary branching. Overall, these results indicate that the
general effect of fluctuating group size in cooperative games is to reduce the
risk of the tragedy of the commune, even though exceptions exist.

For investigating the stability of singular strategies, games where the com-
munal investment are divided up between players are particularly accessible
since the cooperative investment at the singular strategy is not affected by
variation in group size. In more general games additional effects can arise.
While fluctuations in group size still tend to stabilize games with additive
payoffs, it can, as we have seen, lead to increased cooperation. Consequently,
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Two possibilities Branching reduced Branching reduced

Branching enhanced No branching No branching

Branching enhanced No branching No branching

Fig. 5 The effect of fluctuating group size on the occurrence of evolutionary branching in
games with payoff functions not explicitly depending on the group size can be classified
using the values of P ∗

12
, A = 〈k〉P ∗

12
+ P ∗

22
and B = P ∗

12
+ 〈k〉−1P ∗

22
. Each panel shows

the range of values in which the middle point of inequality (10) must lie for evolutionary
branching to occur, as a function of 〈k−1〉 (fluctuation in group size). The blue and red
dotted lines are the left and right hand side of inequality (10) respectively. When P ∗

12
≥ 0

fluctuation in group size always reduces the region in which evolutionary branching occurs.
If instead P ∗

12 < 0 the effect that fluctuating group size has depends on whether A ≤ B or
A > B. In the former case, the region of branching increases with variation in the number of
player, while information about P ∗

22
is needed to determine the role that fluctuating group

size plays in the latter case (see Sect. 3.3 for details).

the singular strategy can shift to a region in which the payoff function has a
different curvature. Therefore, one can certainly construct examples in which
singular strategies in general common goods games with additive payoff are
destabilized by fluctuations. However, for any given curvature, fluctuations will
still have a stabilizing effect on general common goods games with additive
payoff.

The results obtained in this study indicate that fluctuations in group size
could significantly affect cooperation in real world systems by increasing or de-
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creasing the cooperative investment, and by stabilizing cooperative strategies.
However, so far only a handful of studies have considered the role of fluctuat-
ing group size for the evolution of cooperation (e.g. Hauert et al, 2006, 2002)
and many questions remain unexplored, for example the effect of fluctuating
group size in cooperative games where the communal investment is not divided
up between the player, and the effect of arbitrarily large mutational steps. In
light of the prominent role of functional forms of the payoff for the evolution
of cooperation, studies addressing proper models formulations for real world
cooperative systems are strongly desired.
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A Demographic dynamics

We assume that there are n morphs in the population with trait values r1, . . . , rn and
corresponding densities X1, . . . , Xn. The population dynamics is assumed given by

X′

i(t)

Xi(t)
=(rate of participation in games)× (12)

(average individuals emerging from game) − µ(X1 + . . . + Xn), (13)

where µ is included to allow for density dependence. Assume for simplicity that the rate
at which an individual partakes in a game is 1, that an individual player participates in
a k-player game a fraction pk of the time, and that the participants are drawn at random
from the population. The expected number of individuals with trait value ri emerging from
a game is then

R(ri; X) =

∞
X

k=1

pk

X

1+k1+...+kn=k

(k − 1)!

k1! . . . kn!

X
k1

1
. . . X

kn

n

(X1 + . . . + Xk)k−1
P

 

ri,
W̃ (k1, . . . , kn)

k
, k

!

,

where P is the function for the payoff defined in Sect. 2.2 and W̃ (k1, . . . , kn) is the common
investment produced by ki individuals with trait value ri, 1 ≤ i ≤ n. We then have

X′

i

Xi

= R(ri;X) − µ(X1 + . . . + Xn).

Now, let xi be the frequency of trait value ri in the population, i.e.,

xi =
Xi

X1 + . . . + Xk

.

Then
x′

i

xi

=
X′

i

Xi

−
X′

1 + . . . + X′

n

X1 + . . . + Xn

,

and so, with the obvious extension of the notation,

x′

i

xi

= R(ri;x) − (x1R(ri; x) + . . . + xnR(ri; x)), (14)

which can be considered a generalization of the classical replicator equation (see e.g. Hof-
bauer and Sigmund, 1998).
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B Evolutionary dynamics

From (14) we deduce the initial increase in frequency for a rare mutant strategy m in an
environment dominated by players with strategy r. Writing x1 = xr , x2 = xm, r1 = r and
r2 = m when only two morphs are present, we have

R(m; x) =
∞
X

k=1

pk

k−1
X

j=0

“k − 1

j

”

xj
rxk−1−j

m P

 

m,
W̃ (j, k − j)

k
, k

!

.

The invasion fitness of a rare mutant morph is then

f(r, m) = lim
xm→0+

x′

m

xm

= R(m; 1, 0) − R(r; 1, 0)

or

f(r, m) =
∞
X

k=1

pk

"

P

 

m,
W̃ (1, k − 1)

k
, k

!

− P

 

m,
W̃ (1, k − 1)

k
, k

!#

. (15)

In the arguments in Sect. 3 we assume that the total common investment equals the sum of
individual contributions,

W̃ (1, k − 1) = m + (k − 1)r, (16)

and we also express all calculations in terms of the probability qk that a game with k players
is formed. This relates to the individual’s probability pk of joining a k-player game as

pk =
kqk

P

∞

k=1
kqk

=
kqk

〈k〉
. (17)

where 〈k〉 is the average game size, 〈k〉 =
P

kqk. Substituting equations (16) and (17) into
(15) yields

f(r, m) =
∞
X

k=1

kqk

〈k〉

»

P

„

m,
m + (k − 1)r

k
, k

«

− P (r, r, k)

–

. (18)

From the initial growth rate for rare mutants, f(r, m), given by (18) we derive the
selection gradient

g(r) =
∂f

∂m
|m=r = 〈k〉−1

∞
X

k=1

qk [kP1(r, r, k) − P2(r, r, k)] , (19)

where Pi denotes the derivative with respect to argument i. Of particular interest are the
singular strategies where directional selection ceases. This occurs at the points r∗ for which
the selection gradient vanishes, so that g(r∗) = 0. Below we use superscript ∗ to denote that
the first two arguments are evaluated at the singular strategy r∗. A singular strategy r∗ is
convergence stable if

g′(r∗) = 〈k〉−1

∞
X

k=1

qk [kP ∗

11(k) + (1 + k) P ∗

12(k) + P ∗

22(k)] < 0, (20)

in which case nearby monomorphic populations will evolve towards it. Disruptive selection
occurs at the singular strategy if

∂2f

∂m2
|m=r=r∗ = 〈k〉−1

∞
X

k=1

qk

»

kP ∗

11(k) + 2P ∗

12(k) +
1

k
P ∗

22(k)

–

> 0. (21)

We can combine (20) and (21) into a single criterion for the occurrence of an evolutionary
branching point,

∞
X

k=1

qk

»

(1 + k) P ∗

12(k) +
1

k
P ∗

22(k)

–

< −
∞
X

k=1

kqkP ∗

11(k) (22)

<

∞
X

k=1

qk

»

2P ∗

12(k) +
1

k
P ∗

22(k)

–

. (23)
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The left inequality is the condition for convergence stability (implying evolutionary attrac-
tion), while the right inequality is the condition for the absence of evolutionary stability
(implying disruptive selection).
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