SUPPORTINGAPPENDIX

In the following, we give additional figures and examplesyali as the explicitmatlab codes used
in the numerical computations.

STRUCTURAL KINETIC MODELING

Our approach is based on an alternative parametric repgeggenof the Jacobian matriX of a

metabolic system,
Jx=A06 (1)

whereA is specified by the stoichiometric matrix and the (usuallyerkmentally observed) operating
point, andé% denotes the matrix of normalized saturation parameters.

The transformation results from rewriting the original tgys in terms of new variablesg, such
thatx; = S;/S?.

dSZ' dSZ SZO l/j(SO)
= ZNij vi(S) — 0 ZNij S0 2:(89) vi(S) . (2)
J J N e
=1 =1
Thus 1 dS (S%) 1,(S)
_ Z Nij J J (3)

SO ar SOy (S0)
N——

Aij i (x)



The Interpretation of the Saturation Parameter

The method crucially relies on the interpretation of thenwa®® of normalized saturation parameters.
We have to evaluate the partial derivatives of the normdlieaction rateg:(x) with respect to the
new normalized variables at the pointk” = 1.

To prove the general case asserted in the manuscript,
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we write a given biochemical rate lawsS, k) in the form
v(S,k) = kyS"/ fin(S, k) | (5)

where S denotes a single reactant and the dependence on all otlcéauresahas been absorbed into
the parameterk, andk.
The functionf,, (S, k) denotes a polynomial of ordet in S with positive coefficientd; > 0 (1).

fu(SK)=> kS and k>0Vi=0,....m with k >0. (6)
=0

Note that forn = 0, the equations also includes the case of product inhibition

Applying the normalization transformation of E§.on the single reactarff and using the variable
substitutionS — x5, we obtain
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The obtain the partial derivative at = 1, we write
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Evaluating the last term and factoring outresults in
8fm(50$) 0 < 0\l,.l — 0\l
T |l ae S| =m ) (S ©
T =0 20—=1 =1
Note thatL < 1foralll=0,...,m.
Resuming with the evaluation of E§above, we thus obtain
k(S0
0 =n—m 21:1 m l( ) (10)
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TWe requirekq > 0, otherwise ones can be factored out and the order of the polynomial decreagse thatn does
not necessarily have to be positive or integer.



Using the definition
_ Z?ll % kl(SO)l _ Z;ll % kl(SO)l
fn(S°) Do k(SO

a (12)
we have to demonstrate thatc [0, 1].
Since all coefficients in the polynomial are positye> 0 andk; > %k:l forall K, andl =0,...,m

the demoniator in EdL1is indeed always larger or equal to the numerator. Thus yinall

Zﬁl # kl<50)l

O =n —m == =n—ma«a with « € [0,1]. 12
T leo kl(SO)l [ ] ( )
For a vanishing steady-state substrate concentrétio® — 0, we obtain
li =0. 13
mer =0 3

For very large steady-state substrate concentrationS® — oo, the dominating terms in E4.1 are
those with the highest exponent, thus
lim a=1. (24)

S0 —c0
Thus, if6* is restricted to the appropriate interval, specified by ttpoeents of the rate law, it indeed
covers all possible values of the (normalized) partial\@giie at the steady-state concentratih
Note that the limiting casé$mgo_,o @ = 0 andlimgo_,.o & = 1 do not depend on the parametérs
andk of the original rate equation.



Some Examples of Biochemical Rate Equations

In addition to the examples given Materials and Methodswe illustrate the normalization transfor-
mation and the interpretation of the saturation paramet&rsy several commonly used biochemical
rate laws.
Starting with the basic Michaelis-Menten rate laps) = v,.S/(Ky + S), we obtain
Ky +5° Ou(x) 1

=—r—— = or = = e [0,1].
Clearly, the partial derivativé’ € [0, 1] measures the degree of saturation or, likewise, the 'éffect
kinetic order’ (in the nomenclature of the power-law forisal) of the reaction at the steady state
This is illustrated in Fig. 8.

Michaelis-Menten kinetics with competitive inhibition:
Including 'competitive inhibition’ by a metabolitg, results in

UmaxS/KM 1—|—SO/KM—|'IO/K[
S, 1) = = = .
V( ) ) 1+S/KM+I/K[ M("TvaI) xs1+$sSO/KM+$I]O/KI

The normalized partial derivative with respect to the ndized variabler is thus
B SO/ Ky

1+ 8Ky + 10K,
with the limiting case#_ = 1 for S — 0 (linear regime) and*_ = 0 for S° — oo (full saturation).
For the inhibitor/, we obtain

o1 =1

€ [0,1],

~I°/K
114+ S Ky +1/K;
with the limiting caseg” = —1 for I° — oo and#” = 0 for I — 0. Note that the saturation

parameter again covers the full interval, irrespectiveheftalues of5° and K ;.

Additional noncompetitive inhibition:

Similar, when an additional 'noncompetitive inhibitiony la metabolitel; is included
Umax S/KM

(1+S/Ky+6L/Ky) (1+ L/Ky,)

The normalized rate equation with respect to the variables;;, andz, at the steady statg’, 17,
andrl is

IJ(S, Il, ]2) =

(1+ 8% Ku+I)/Ky) (1+13/K7,)
1+ JJSSO/KM + JJH]?/KH) (1 + $1213/K[2) )
In this case, the saturation parameters with respect endx;; remain unchanged.
For the partial derivativé/;  with respect tor;, we obtain

[ _I2O/KI2
2 1+ 19/Ky,

Note that?’; , does not depend on the valuesSfand?.
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e [0, -1] . (15)



Note: For any rate equation consisting of several multiplicativections, the normalized saturation
parameter with respect to a reactandepends only on those functions in whiShappears.

A specific example: The fructokinase in sugar cane

An explicit example of a biochemical rate law is the randorden bireactant kinetic, here including
inhibition by ADP and fructose, which was used previouslyrtodel the fructokinase (FK) in sugar
cane (2).

[Fruc] [ATP]
e Umax Kr Karp )
14+ [Fruc} 1 + [Fruc} + [Fruc] [ATP] [ADP]
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For the saturation parameters wrth respect to ATP and ADR;brtza'n

More interesting is the saturation parameter with resp:efrUt:tose
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In terms of the general case given by Bdhe exponents are = 1 andm = 2, thusfLX =1 — 2«
with « € [0, 1]. Thus, indeed{X . € [—1,1].

Fruc

Note: The Jacobian is fully defined by the saturation paramgter € [—1, 1]. However, two inde-
pendent Michaelis constants; and K, are needed to determine this value in the explicit rate
law. However, for the linear properties of the system, ad asethe occurence of certain bifur-
cations, only the combination of both Michaelis constastelevant. g% . = 1—a; —ar with
ay € [0,1] andar € [0, 1].) In this sense, our approach allows to identify relatedpeaters in
explicit equations.

A specific example: The Rubisco reaction in models of the Caiw cycle
Another example is the rate equation used in Ref. (3) to mib@elRubisco reaction in the photosyn-
thetic Calvin cycle.

[RuBP]
Vs Umax g,
ubisco = [RuBP} [PGA] , [FBP] , [SBP] , [Pi] , [NADPH] °
1+ + % TR Ka Tk,

Obviously, the rate equation foIIows the general case glwerEq. 4, thus #RuEise ¢ [0,1] and
gRubisco ¢ 10, —1] for the dependence on all other reactakits

Sigmoidal kinetics: The Hill equation
An example of sigmoidal kinetics is given by the "Hill equati (1),
Umax (S/KS)n

vhin(S) = T+ (S/Ks)" = pan(v) =

1+ (8°/Kg)"
1+ (25 Kg)"

n




wheren > 1 denotes the Hill coefficient. Thus

| 1
9H1H: X 0 )
s = TR <o

The saturation parametét'! € [0,7] is monotonically decreasing for increasing saturatiom, se
Fig. 9.

Note: Despite its definition as a partial derivative, the paramétedoes not measure the slope of
the rate equatidn As can be verified for the Hill equatiofi!'!! decreases monotonically for
increasing saturation. Hence the term saturation paramete

A specific example: Inhibition of the phosphofructokinase ly ATP
A heuristic variation of the Hill equation was used in Re).t@gImodel the combined PFK-HK reaction
(See reactiom, in Fig. 2.) The reaction includes inhibition by its substrafl P.

With respect to ATP, we have linear activation due to its@ffes a substrate and inhibition with a
positive exponent (Hill coefficient. According to the discussion above, we thus expect for the

corresponding saturation parametgEs "% = 1 — ¢, with ¢ € [0,n]. Indeed, in terms of the
normalized variableg (glucose) and. (ATP)
! * <[AIT<};}O)H PFK—-HK <[AIT{};)}O>H
MPFK—HK(gv a) =ga n = QATP_ =1-n 2PN (17)
a[ATP]0 [ATP]0
L+ (") 1+ ()
EETSM

This example also demonstrates that the exponesionly relevant in combination with the satura-
tion of the respective reaction, as determined by the Michaenstanti’;. We writeé = an with

a € [0, 1]. Only the product of both terms appears within the JacotAasmall exponent (small Hill
coefficient) can be compensated by a high saturation andreisa. Often this allows one to specify
a minimal exponent for which certain bifurcations can beeeted.

Note: For our reasoning to hold, forward and backward terms inrstvke rate equations have to
be treated separately. As in most cases the denominatarnsiadl, this does not give rise to
additional saturation parameters. Consider the case ofeasible bireactant rate equation of

the form AB— PQJK
A+BoP+ with v = Uy ——— < 18
. F(A, B, P,0) 4o
Treating both terms i = v, — v_ separately, result in the normalized rates
f(A°, B°, P°,Q°) f(A%, B P°,Q°)
= _ = . l
e = O ) O TP gy Y

*Howeverg# measures the slope of the rate law in a double logarithmic plo



Thus, obviouslyg#+ = 1 — o andf”- = «, with o depending on the functiofi( A, B, P, Q).
However, within the matrixXA one additional parameter arises, corresponding to thengycl
flux.

In the following, our analysis is entirely based on an intetation of the saturation parameters and
does not make any use of the explicit functional form of the emjuations.



An lllustrative Example

Though the hypothetical pathway given in Fig. 1 serves dhlgtrative purposes, we provide a brief
analysis of its dynamical capabilities.

_________

& .
Vv, G Vs 2T Vg

Following the model proposed in Ref. (5), one unit of gluc@Sgis converted into two units of ATP
(T), with ATP exerting a positive feedback on its own prodioict

We assume that the average concentratiéhand7™ of both reactants have been determined experi-
mentally. The stoichiometric matriX, with its associated null-spa&€ = [1 1 2], reveals that there
is only one independent reaction rate= c. This information enables the construction of the matrix
A and defines the operating point of the system (see main tegetfails).

The only free parameters at the observed operating poihase¢he normalized degree of saturation
02 € [0,1] of v, with respect to its substrate glucose (G) and the normalieegpiee of saturation
3. € [0,1] of v3 with respect to its substrate ATP (T). Furthermore , thelfeell of ATP upon, is
measured by € [0, n|, wheren > 1 denotes a positive integer. Given these parameters, wa are i
position to investigate quantitatively the bifurcationkérent to structure of the Jacobian.

The two-dimensional pathway gives rise to a Hopf bifuraatiohich indicates the emergence of
sustained oscillations, independent from any further rag$lons about the biochemical rate laws.
Fig. 10 shows the bifurcation diagram of the system at theufagd) experimentally observed op-
erating point. The blue surface denotes the Hopf bifurcatiove which the steady stdtg®, 7°)
loses its stability. As can be observed, with increasingratibn of the reaction®¢, andd3. — 0) the
oscillatory region increases in size, i.e., the Hopf biéitien occurs for lower values 6.

The red surface denotes the emergence of a pair of compl@xgada eigenvalues: in between the red
and blue surfaces the system exhibits an oscillatory retutime asymptotically stable steady state.
The right plot in Fig. 10 shows a cut through the diagramiat= 1 (linear dependence of, on its
substrate&~, no saturation), corresponding to the case studied byeBial (5) using explicit differen-
tial equations. Inbetween both lines, the system exhibitssaillatory return to the stable steady state.
Note that since the pathway only consists of two metaboliidarcations of higher codimensions,
such as a double Hopf bifurcation, cannot arise.



Dynamics and Bifurcations

One of the foundations of our approach is the fact that kndgdeof the Jacobian matrix alone is
sufficient to deduce certain characteristic bifurcatioha metabolic system. In general, the stability
of a steady state is lost either in a Hopf bifurcation (HO)roaibifurcation of the saddle-node (SN)
type, both of codimension-1. At an SN bifurcations a singlezigenvalue of the Jacobian appears
as the number or stability of steady states changes. Bifarsof the SN type often indicate the
presence of multiple steady states.

As the only other local codimension-1 bifurcation, a Hogtibgation occurs as a complex conjugate
pair of eigenvalues crosses the imaginary axis towardgipeseal parts. This gives rise to (at least
transient) oscillations as the stability of the steadyesimiost. Note that it is not possible to distin-
guish between a sub- and supercritical Hopf bifurcatioelgain basis of the Jacobian.

Of particular interest to reveal insights about the dynamibzhavior of systems are also bifurca-
tions of higher codimension, such as a Takens-Bogdanov, (@ Bavrilov-Guckenheimer (GG), or
a double Hopf (DH) bifurcation. Each of these local bifurcas of codimension-2 arises out of an
interaction of two codimension-1 bifurcations and has ingoat implications for the possible dynam-
ical behavior. For instance, a TB bifurcation indicatesphesence of a homoclinic bifurcation and
therefore the possibility of spiking or bursting behavibine presence of a GG bifurcation shows that
complex (quasiperiodic or chaotic) dynamics exist geradgidn a certain parameter space. In the
same way a DH bifurcation indicates the generic existeneeobfaotic parameter region. For a more
thorough mathematical description, see refs. (6) and (7).



THE GLYCOLYTIC PATHWAY

The first example within the main text is a medium-complerégresentation of the anaerobic gly-
colytic pathway, adapted from earlier kinetic models (4, 8)

Vg
ATP —>—= ADP
NAD'Y NADH NADH NAD*
Vi1 Vo V3 v E Vg f
Glo = FBP —=T TP ANCE I Pyr EtOH
! NADH
2 ATP-: 2 ADP v 2ADP 2ATP
7 V6
NAD*

Metabolite abbreviations are as follows: Glucose (Glc)cfose-1,6-biphosphate (FBP), pool of
triosephosphates (TP), 1,3-biphsophoglycerate (BP@), gfiqoyruvate and acetaldehyde (Pyr), and
ethanol (EtOH). Glc and EtOH are assumed to be the externads@nd sink, respectively.

The stoichiometric matrixV is as follows:

‘Vl Vo V3 Vg Vs Vg V7 I

FBP +1 -1 O O O O O O
TP o +2 -1 0 0 0 -1 o0
BPG o o+1 -1 0O O O O
Pyr/ACA| 0 0O O +1 -1 -1 0 O
ATP 2 0 0 +2 0 0 0 -1
NADH o o+1 O -1 0 -1 O
NAD™ O O -1 0 +1 0 +1 O
ADP +2 0 O -2 0 0 O0 +1

The rank of the stoichiometric matrix isnk(IN) = 6, corresponding to thé steady-state mass
conservation constraints. Thus, all feasible steady$hax vectors/(S?) can be described by two
basis vectork;:

c1 + Co . (20)

2
V(SO) = Zklcl =
i=1

O~ R O H R~ ~
N OO DN NN = =



The Choice of the Operating Point

To evaluate the structural kinetic model, we focus on a $igeexperimentally observed operating

point of the system. However, in the case of sustained a$icifls, the (in this case unstable) steady
state cannot be observed directly. Within the main text, e approximate the operating point at
which the system is to be evaluated by the average of the wdsepncentration and flux values, as
reported in (4,9):

average metabolite concentrations [mMM] flux values [mM - min—1]
FBP TP BPG Pyr ATP NADH NAD ADP | ¢ Co
5.1 0.12 0.0001 148 2.1 0.33 0.67 1.9 \ 20.0 30.0

These values, together with the stoichiometric maniully specify the matrixA.

The approximation by the average quantities is justifiedigyassumption that in most cases the ac-
tual unstable state of the system is reasonably close tosdrage values. However, to ascertain that
our result do not depend crucially on the exact knowledgdefaperating point, we have to repeat
the analysis, including variation of the assumed unstabkdy state.

Fig. 11 exemplifies the small deviation between the actustainle state and the average of the ob-
served values, using an explicit model of the glycolytidpeaty (parameters as in Figd)3 As we do

not assume precise knowledge of the operating point, wevdtlosome variation around the average
of the experimentally observed values, as depicted in Aigidht

Figure 12 repeats the analysis shown in Fig. 3, but includinglative 20% variation in each steady-
state variable (choosen from a gaussian centered at theggv/ebserved values). As can be observed,
the results do not depend crucially on the precise knowlefigfee actual unstable steady state. The
transition to (at least transient) oscillatory behaviorabust with respect to the assumed unstable
state.

Note: A similar situation also arises in the evaluation of explitnetic models: Any explicit model
will eventually result in a numerical simulation of a padiar set of parameters, and it is far
from certain, and indeed rather unlikely, that these arexiaet parameters of the actual system.
An appropriate way to account for this, though computatignrdemanding and only rarely
done for explicit models, is to repeat the analysis for adaet of parameters in close vicinity
of the original set of parameters (thus to ensure that thergbd behavior indeed persists and
is not an artifact of one particular set of parameters).

Note: A similar strategy can be adopted if large fluctuations ofakgerimentally observed concen-
trations are observed. In this case, it is appropriate nfiidos only on one specific state, but
to include the fluctuations into the evaluation of the system

Note: While often the mean of the observed concentration valuesleed a reasonable approxima-
tion of the actual state, this must not always be the casearticplar, when the experimentally
observed concentration values follow a strongly skewetlibigion (such as a power law), the
mean is no longer appropriate. In this case, the (vicinityhe) state at which the Jacobian
is to be evaluated has to be chosen in accordance with thédtgin of the experimentally
observed concentration values.

Similar, one may refine the range of variation shown in Figb¥ancluding amplitude and
covariance of the experimentally observed concentratibnes.



The Structural Kinetic Model

Second, the dependence of each reaction on the metabalgés he specified as follows:

FBP TP BPG Pyr/ACA ATP NADH NAD ADP
mw| 0 0 0 0 0, O 0 0
v |25 O 0 0 0 0 0 0
vs| 0 6 0 0 0 0 6, O
| 0 0 6Ol 0 0 0 0 Ol
v 0 0 0 03, 0 My O 0
w| 0 0 0 05, 0 0 0 0
v:| 0 6, 0 0 0 0Ly O 0
w| 0 0 0 0 By O 0 0

For simplicity all reactions are irreversible and dependlair substrates only, resulting ir2 free
saturation parameters. The dependencg oh ATP is given a®ip = 1 — £ with £ € [0, n).

To obtain an explicit representation of the matéi%, we have to take into account the two con-
servation relations ATP+ADP = const. and NAB- NADH = const. Using the definitiom; =
[ATP]°/[ADP]" andf3; = [NADH]/[NAD*]", we obtain

O 0 0 0 1-¢ 0
O2gp O 0 0 0 0
0 63p 0 0 0 — B2 - 03 a1
O+ — 0 0 Q%PG 0 ﬁl ' HADP 0
x 0 0 0 ngr 0 0 apH
0 0 0 ngr 0 0
0 60 0 0 0 0% apH
0 0 0 0 03 rp 0

Note: Generally, conserved pools of metabolites reduce the nuofbedependent variables. Con-

sider the casé; + S, = const., then
0
1+ T —% = const. (21)
S1

The dependence of each normalized reactiongatex; can thus be written in terms ef and
the partial derivative with respect g transforms into

Sy
oy, — 0 — @951 ) (22)
1
Similar for the more general ca3€, m;S; = const., wherem,; denotes a constant integer.
Then G0
my; .
T, = const — R 23

and the partial derivatives have to be replaced accordifsglgThe Photosynthetic Calvin Cyder
an explicit example).



The Matlab Code

function [J] = GlycolysisJacobian
% The (schematic) function returns the normalized Jacobian
% of the model depicted in Fig. 2.

% The colum vector of metabolite concentrations
X0 = [FBP TP BPG Pyr ATP NADH NAD ADPT;

% The stoichiometric matrix

N=[ +1 -1 0 0 0 0 0 0 ;
0 +2 -1 0 0 0 -1 0 ;
0 0 +1 -1 0 0 0 0 ;
0 0 0 +1 -1 -1 0 0 ;
-2 0 0 +2 0 0 0 -1
0 0 +1 0 -1 0 -1 0 ;
0 0 -1 0 +1 0 +1 0 ;
+2 0 0 -2 0 0 0 +1 ;
% The null space of N
K =[1 1,
1 1;
1 2;
1 2;
0 2;
1 0;
1 0;
0 2];

% The row vector of steady state fluxes
€1=20.0; ¢2=30.0; v=(K *[cl; c2]);

% Define the matrix LAMBDA
NO=N(1:6,:);

LAMBDA=NO* v(ones(6,1),:);
LAMBDA=LAMBDA./X0(1:6,0nes(8,1));

% Construct the matrix of saturation coefficients

t; % a vector containing the 11 nonzero elements of theta
xi; % A parameter specifying the feedback

bl = ATP/ADP; b2 = NADH/NAD,;

% The matrix theta

theta = [ O 0 0 0 1-xi 0 ;
t(1) 0 0 0 0 0 ;
0 t(2) 0 0 0 -b2 *t(3);
0 0 t4) 0 -b1 =t(5 0 ;
0 0 0 t(6) 0 t(7);
0 0 0 t(8) 0 0 ;
0 t(9) 0 0 0 t(10);
0 0 0 0 t(11) 01l

% The Jacobian matrix in terms of the normalized variables
J = LAMBDAtheta; % the scaled Jacobian



An Explicit Kinetic Model

To verify the dynamical behavior predicted by the Jacobramuse an explicit kinetic model of the
pathway (see Fig. 3).

Following the model of Wolkt al. (4), all rate equations are modeled as bilinear mass-aet{Sn =

k; 1] S:. Only the combined PFK-HK reaction contains a nonlinear saturable term (see above).

v = ki [GIC][ATP] f(JATP]) with f([ATP]) = [1+<[A;f])n}_ . (24)

The parameters are chosen such that the model reproducdssined steady sta®. In particular,

for the bilinear rate equatioris = v?/ [] S?. For the combined PFK-HK reaction, we have to specify
the parameterk, and K, using

0
Uy n

[GIc]o[ATP]0 ¢

3=

K; = [ATP]" (n E g) and k=

with an exponent. = 4 (4). In this way, the explicit model is consistent with theustural kinetic
model used in Fig. 3. All saturation parameters@fre- 1, exceptdip = 1 — £ with € € [0, 4).

(25)

Note: Not all explicit kinetic models can reproduce all possitdeabian matrices of the full struc-
tural kinetic model. For example, by using only bilineaeratuations all saturation parameters
are restricted to the unit value. However, it is always galesio construct an explicit model
that is consistent with a given Jacobian.



Analysis of the Structural Kinetic Model

In the following, we provide additional figures with respéatthe analysis of the yeast glycolytic
pathway depicted in Fig. 2.

Note: Similar to conventional modeling, all results of course@®@bon the initial (stoichiometric)
definition of the model itself. Prior to the analysis it hado®specified whether certain reac-
tions are to be included in the model, whether cofactors ansidered explicitely or assumed
constant, as well as which reactions are treated as relewibireversible. As with explicit ki-
netic modeling, based on differential equations, thesesabexs will affect the properties of the
system. In our case, all results relate to the medium contplespresentation of the pathway
shown in Fig. 2.

As one of its primary features, the method described in thim rtext allows one to explore rather
large regions of the parameter space and serves to identifyat reaction steps that predominantly
contribute to the stability of the system. To this end, thersdion parameter®’ < [0, 1] are sampled
repeatedly from a given (in this case uniform) distribution

Relating to Fig. 4, we look for reaction parameters that leilai strong correlation with the stability
of the system (see text for details). The correlation caeflichetween the stability, measured by the
largest real part of the eigenvalues of the Jacobian, antitaturation parameters is estimated as:

9123‘BP G%P 9§IAD+ 94BPG 94ADP eliyr GI%ADH el%yr G%P GIZIADH eiTP
040 027 003 000 -000 028 001 -023 -020 -0.03 -0:55

An alternative, and maybe more appropriate way to assegsiffaet of each reaction parameter upon
the stability of the system, is to select for instances ofXaeobian that result in a stable operating
point. Subsequently, the distribution of parameters ae¢hkacobians is compared to the initial (here:
uniform) distribution of the parameters. The approach ssi@lized in Fig. 13. Importantly, in this
way we only rely on a comparision of distributions and theulissdo not depend on the shape of the
initial distribution.

Fig. 14 repeats the analysis for several other saturaticanpeters. As can be observed, in some cases
the resulting distribution is markedly changed, indicgtihat these saturation parameters contribute
predominantly to the stability of the system.

Note: N3 < 0 implies stability of the operating point and is a necessamddion to actually
observe the system at a steady state with the experimegiay metabolite concentrations
and flux values. HowevehR** < 0 does not imply global stability of the operating point, i.e.
there might be coexisting attractors, such that for a largmigh perturbations the system will
not return to the operating point.



THE PHOTOSYNTHETIC CALVIN CYCLE

Displayed below is the reaction scheme of the photosymtt@alvin cycle, adapted from earlier
kinetic models (3, 10). The systems consist3®Mmetabolites, subject to two conservation relations,
and 20 reactions, including export reactions, starch synthesis, and regeneration Bf Aie rank

of the stoichiometric matrix isank(N) = 16, leaving4 independent steady-state reaction rates. The
model describes chloroplast metabolism with triosephatplirP) export and starch production as
main output processes. For details, see the the origindicatibns.

Starch
Pi SBPj—» S7P R5P
ADP
Pi
ATP E4P
G1P X5P<—= RU5P
I d ATP
G6P — F6P

N

RuBP

ADP

-
vy)
T

Pi

— CO2
NADP
ATP /\ Pi \/NADPH ADP ATP
DHAP -— GAP \ BPGA \ / PGA
Pi Pi Chloroplast Pi
N N ‘\\\
Medium /
Pext Pext Pext
DHAP GAP PGA

Metabolite abbreviations are as follows: phosphoglyee(®GA), Bisphosphoglycerate (BPGA),
glyceraldehyde phosphate (GAP), dihydroxyacetone phaispfdHAP), fructose 1,6-bisphosphate
(FBP), fructose 6-phosphate (F6P), glucose 6-phospha@®)(@lucose 1-phosphate (G1P), ery-
throse 4-phosphate (E4P), sedoheptulose 1,7-bisphes{8aP), sedoheptulose 7-phosphate (S7P),
xylulose 5-phosphate (X5P), ribose 5-phosphate (R5R)|ase 5-phosphate (Ru5P), ribulose 1,5-
bisphosphate (RuBP), inorganic phosphate (Pi).

In this section, we focus on an analysis of the model at a Bp@perating point, corresponding to
the case investigated with previous kinetic models andrdesg the pathway under conditions of
light and CQ saturation. All metabolite concentrations are as reparteefs (3) and (10) (in [mM]).

PGA BPGA GAP DHAP FBP F6P E4P SBP S7P X5P
059 0.001 0.01 0.27 0.024 1.36 0.04 0.13 0.22 0.04

and (in [mM])

R5P Ru5P RuBP G6P G1P ATP ADP P
0.06 002 014 312 018 039 0.11 8.1




The system is characterized by four independent steatlyftaes, chosen here as the main export
fluxes (in [mMM- min~1).

Vstarch VPGA VGAP VDHAP
0.16 7.1 0.56 12.0 °




Analysis of the Structural Kinetic Model

The experimentally observed operating point is stable fostmealizations of the Jacobian. Fig. 15
shows the percentage of stable models with respect to emseizk (number of realizations). As
we are mostly interested in typical realizations, the patiage of stable models converges rather fast,
despite the large number of parameters.

Similar to the glycolytic pathway, we examine the impactradividual reaction steps upon the sta-
bility of the system. Or rather, vice versa, we ask whetherdhare specific values of saturation
parameters that would make the system prone to instaldity. 16 shows such a scenario, together
with the unrestricted distribution of the largest real peithin the spectrum of eigenvalues.

Since most models have;** < 0, we compare the distribution of saturation parameters fodets
with A3** > 0 with the initial distribution. Marked changes are found fbe triosephosphate iso-
merase (TBl: GAR— DHAP) with respect to GAP and for the G3P dehydrogenase (B3BEGA+
NADPH «— GAP + NADP + Pi) with respect to BPGA, see Fig. 17. In both cdsgh saturationd"
small) leads to instability, as is verified in Fig. 16. Notatthoth reactions are not saturated in the
original model, thus avoiding the instability.



The Matlab Code

function [J,Jx,CS,CJ]

= CalvinCycle(t,p);
% The (schematic) function returns the normalized Jacobian
% of the model depicted in Fig. 6 of the manuscript.
% Note that this is a schematic function and
% not optimized for computational performance.

% The stoichiometric matrix

N=[2-1 0 0O 0 0 0 OO 0 OO O O OOT O-1 0 O

0 1-1 0 00O O O OO OOOOTGOTG OGO O O
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o
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% The Null Space

K =1[6



% DEFINE OPERATING POINT
% flux values

cl = 0.289;

c2 = 12.74;

c3 = 1.0;

c4 = 21.6;

A = [cl c2 c3 c4];

A = A+1000/1800; % to obtain units in [mMM/min]
V=Kx A,; % the vector of steady state fluxes
% Define Concentrations (in [mM])
PGA = 0.59;

BPGA = 0.001;

GAP = 0.01;

DHAP = 0.27;

FBP = 0.024;

F6P = 1.36;

G6P = 3.12;

G1P = 0.18;

SBP = 0.13;

S7P = 0.22;

E4P = 0.04;

X5P = 0.04;

R5P = 0.06;

Ru5P = 0.02;

RuBP = 0.14;

P = 8.1;

ATP = 0.39;

ADP = 0.5-0.39;

X0 = [PGA BPGA GAP DHAP FBP F6P E4P SBP S7P X5P R5P Ru5P RuBP G@&P &TP ADP P J;

% Define Matrix of Saturation parameter
t; % vector of substrate saturation (28 parameters)
p; % global product inhibition

tea=[p O O O O O O O O O O O ¢) O O 0 0 O
2 p O O O O O 0O 0O OoO 0O O O O 0 3 -p O
0O t) p O O O O O O O 0O 0O 0O 0O 0 0 0 -p
0 0tts) p O O O O O O O 0O 0 o 0 0 0 o0
0O o0ty p O O O O O O O O O 0 0 0 O
o 0 0 018 p O O O O O O 0 0 0 0 0 -
0 0 9 O O0¢twO - O O -p O O O O O 0 0 o
0O 0 0 t11)) 0 o0 l2) p O O O O O O O 0 0 o
o0 0o o0 0 0 O 0t p O O O O 0O 0O 0 0 -p
0O O0t4 O O O O 0t p p O O O O 0O 0 O
o 0o o o0 0O o OoO O O O0t6 - O O 0O 0 0 ©
o0 o o o0 0 O0O O 0 o0ty O - O O O 0O 0 o
o 0 o o0 0 o OoO O O O O0t18 -p O 0t19 -p O
0 0 0 0 O0to) O O O O O O O -p 0O 0O 0 o
o 0o o o o0 o OoO O0O 0O O O 0 O0t21) p O O O
o0 0o o0 0 0 0O 0O 0 0 0 0 0 0 0t2)Hd) -p P
o 0o o0 0 0 OoO O O O O 0O 0 0 0 0 024 t(25);
(26 0 o O O O O O O o0 0 0 0 0 0 0 0 -
0 Oty 0 O O O O O O O O 0O 0 0 0 0 -
0O 0O 0 tw® 0 O O OoO O O O O 0 0 0 0 0 I



% The reduced stoichiometric matrix, omitting ADP and P (mas
NN=N(1:16,:);

% The Link matrix, such that N = L * NN;
L=[diag(ones(16,1)) ;
0 0 0 0 O 0 0OOOO 00O O 0 O0-1
1-2-1-1-2-1-1-2-1-1-1-1-2-1-1-1]

% TAKE MASS CONSERVATION INTO ACCOUNT
% 1) ADP + ATP = const
% replace partial derivatives
dmdxR=dmdx(:,1:16);
LL = L(17,:)). *XO0(1:16)/ADP;
ix = find(dmdx(:,17)"=0);
for i=1l:length(ix);
dmdxR(ix(i),:) = dmdxR(ix(i),:) + LL * dmdx(ix(i),17);
end;

% 2) Pi = sum S_i
% replace using the link matrix
LL = L(18,:)). *XO0(1:16)/P;
ix = find(dmdx(:,18)"=0);
for i=1:length(ix);
dmdxR(ix(i),:) = dmdxR(ix(i),:) + LL +* dmdx(ix(i),18);
end;

% DEFINE JACOBIAN

Vo=V,

X0 = X0

LAMBDA = NNk V(ones(16,1),:);

LAMBDA = LAMBDA./X0(1:16,0nes(20,1));

J=LAMBDA dmdxR;

% convert into original variables if needed
JIx=J;

for i=1:16; JIx(i,))=Jx(i,:) * X0(i);end
for i=1:16; JIx(:,i)=Jx(:,i)/X0(i);end

% Control Coefficients
CS = -L*(JIX(-1)  *NN);

% Flux Control Coefficients
AA = V(ones(18,1),:)./X0(1:18,0nes(20,1))’;
CJ = diag(ones(20,1))+(AA. *dmdx) * CS;

S conservation)
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