
SUPPORTINGAPPENDIX
In the following, we give additional figures and examples, aswell as the explicitmatlab codes used
in the numerical computations.

STRUCTURAL KINETIC MODELING

Our approach is based on an alternative parametric representation of the Jacobian matrixJ of a
metabolic system,

Jx = Λθµ

x
, (1)

whereΛ is specified by the stoichiometric matrix and the (usually experimentally observed) operating
point, andθµ

x
denotes the matrix of normalized saturation parameters.

The transformation results from rewriting the original system in terms of new variablesx, such
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The Interpretation of the Saturation Parameter

The method crucially relies on the interpretation of the matrix θµ

x
of normalized saturation parameters.

We have to evaluate the partial derivatives of the normalized reaction ratesµ(x) with respect to the
new normalized variablesx at the pointx0 = 1.
To prove the general case asserted in the manuscript,
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= n − αm with α ∈ [0, 1] , (4)

we write a given biochemical rate lawν(S,k) in the form

ν(S,k) = kvS
n/fm(S,k) , (5)

whereS denotes a single reactant and the dependence on all other reactants has been absorbed into
the parameterskv andk.
The functionfm(S,k) denotes a polynomial of orderm in S with positive coefficientskl ≥ 0 (1).

fm(S,k) =
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klS
l and kl ≥ 0 ∀l = 0, . . . , m with k0 > 0 . (6)

Note that forn = 0, the equations also includes the case of product inhibition†.

Applying the normalization transformation of Eq.2 on the single reactantS and using the variable
substitutionS → xS0, we obtain
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The obtain the partial derivative atx0 = 1, we write
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Evaluating the last term and factoring outm results in
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Note that l
m

≤ 1 for all l = 0, . . . , m.
Resuming with the evaluation of Eq.8 above, we thus obtain
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†We requirek0 > 0, otherwise oneS can be factored out and the order of the polynomial decreases. Note thatn does
not necessarily have to be positive or integer.



Using the definition
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we have to demonstrate thatα ∈ [0, 1].
Since all coefficients in the polynomial are positvekl ≥ 0 andkl ≥

l
m

kl for all kl andl = 0, . . . , m
the demoniator in Eq.11 is indeed always larger or equal to the numerator. Thus finally
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For a vanishing steady-state substrate concentrationlim S0 → 0, we obtain

lim
S0→0

α = 0 . (13)

For very large steady-state substrate concentrationslim S0 → ∞, the dominating terms in Eq.11 are
those with the highest exponent, thus

lim
S0→∞

α = 1 . (14)

Thus, ifθµ
x is restricted to the appropriate interval, specified by the exponents of the rate law, it indeed

covers all possible values of the (normalized) partial derivative at the steady-state concentrationS0.
Note that the limiting caseslimS0→0 α = 0 andlimS0→∞ α = 1 do not depend on the parameterskv

andk of the original rate equation.



Some Examples of Biochemical Rate Equations

In addition to the examples given inMaterials and Methods, we illustrate the normalization transfor-
mation and the interpretation of the saturation parametersusing several commonly used biochemical
rate laws.
Starting with the basic Michaelis-Menten rate lawν(S) = vmaxS/(KM + S), we obtain
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KM + S0
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Clearly, the partial derivativeθµ
x ∈ [0, 1] measures the degree of saturation or, likewise, the ’effective

kinetic order’ (in the nomenclature of the power-law formalism) of the reaction at the steady stateS0.
This is illustrated in Fig. 8.

Michaelis-Menten kinetics with competitive inhibition:
Including ’competitive inhibition’ by a metaboliteI, results in
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The normalized partial derivative with respect to the normalized variablexS is thus
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For the inhibitorI, we obtain
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parameter again covers the full interval, irrespective of the values ofS0 andKM .

Additional noncompetitive inhibition:
Similar, when an additional ’noncompetitive inhibition’ by a metaboliteI2 is included
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.
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In this case, the saturation parameters with respect toxS andxI1 remain unchanged.
For the partial derivativeθµ
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Note thatθµ
xI2 does not depend on the values ofS0 andI0

1 .



Note: For any rate equation consisting of several multiplicativefunctions, the normalized saturation
parameter with respect to a reactantS depends only on those functions in whichS appears.

A specific example: The fructokinase in sugar cane
An explicit example of a biochemical rate law is the random-order bireactant kinetic, here including
inhibition by ADP and fructose, which was used previously tomodel the fructokinase (FK) in sugar
cane (2).
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For the saturation parameters with respect to ATP and ADP, weobtain

θFK
ATP ∈ [0, 1] and θFK

ADP ∈ [0,−1] .

More interesting is the saturation parameter with respect to fructose

θFK
Fruc = 1 −

[Fruc]0

KI

1 + [Fruc]0

KI
︸ ︷︷ ︸

αI∈[0,1]

−

[Fruc]0

KF
+ [Fruc]0

KF

[ATP]0

KATP

1 + [Fruc]0

KF
+ [Fruc]0

KF

[ATP]0

KATP
+ [ADP]0

KADP
︸ ︷︷ ︸

αF∈[0,1]

∈ [−1, 1] .

In terms of the general case given by Eq.4 the exponents aren = 1 andm = 2, thusθFK
Fruc = 1 − 2α

with α ∈ [0, 1]. Thus, indeedθFK
Fruc ∈ [−1, 1].

Note: The Jacobian is fully defined by the saturation parameterθFK
Fruc ∈ [−1, 1]. However, two inde-

pendent Michaelis constants,KI andKF , are needed to determine this value in the explicit rate
law. However, for the linear properties of the system, as well as the occurence of certain bifur-
cations, only the combination of both Michaelis constants is relevant. (θFK

Fruc = 1−αI −αF with
αI ∈ [0, 1] andαF ∈ [0, 1].) In this sense, our approach allows to identify related parameters in
explicit equations.

A specific example: The Rubisco reaction in models of the Calvin cycle
Another example is the rate equation used in Ref. (3) to modelthe Rubisco reaction in the photosyn-
thetic Calvin cycle.
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Obviously, the rate equation follows the general case givenby Eq. 4, thus θRubisco
RuBP ∈ [0, 1] and

θRubisco
x ∈ [0,−1] for the dependence on all other reactantsX.

Sigmoidal kinetics: The Hill equation
An example of sigmoidal kinetics is given by the ’Hill equation’ (1),

νHill(S) =
vmax (S/KS)n

1 + (S/KS)n ⇒ µHill(x) = xn 1 + (S0/KS)
n

1 + (xS0/KS)n ,



wheren ≥ 1 denotes the Hill coefficient. Thus

θHill
x = n ·

1

1 + (S0/KS)n ∈ [0, n] .

The saturation parameterθHill
x ∈ [0, n] is monotonically decreasing for increasing saturation, see

Fig. 9.

Note: Despite its definition as a partial derivative, the parameter θµ
x does not measure the slope of

the rate equation‡. As can be verified for the Hill equation,θHill
x decreases monotonically for

increasing saturation. Hence the term saturation parameter.

A specific example: Inhibition of the phosphofructokinase by ATP
A heuristic variation of the Hill equation was used in Ref. (4) to model the combined PFK-HK reaction
(See reactionν1 in Fig. 2.) The reaction includes inhibition by its substrate ATP.

νPFK−HK = k [Glc][ATP] f([ATP]) with f([ATP]) =
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With respect to ATP, we have linear activation due to its effect as a substrate and inhibition with a
positive exponent (Hill coefficient)n. According to the discussion above, we thus expect for the
corresponding saturation parameterθPFK−HK

ATP = 1 − ξ, with ξ ∈ [0, n]. Indeed, in terms of the
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This example also demonstrates that the exponentn is only relevant in combination with the satura-
tion of the respective reaction, as determined by the Michaelis constantKI . We writeξ = αn with
α ∈ [0, 1]. Only the product of both terms appears within the Jacobian.A small exponent (small Hill
coefficient) can be compensated by a high saturation and viceversa. Often this allows one to specify
a minimal exponent for which certain bifurcations can be expected.

Note: For our reasoning to hold, forward and backward terms in reversible rate equations have to
be treated separately. As in most cases the denominator is identical, this does not give rise to
additional saturation parameters. Consider the case of a reversible bireactant rate equation of
the form

A + B ↔ P + Q with ν = vmax
AB − PQ/Keq

f(A, B, P, Q)
. (18)

Treating both terms inν = ν+ − ν− separately, result in the normalized rates

µ+ = ab
f(A0, B0, P 0, Q0)

f(aA0, bB0, pP 0, qQ0)
and µ− = pq

f(A0, B0, P 0, Q0)

f(aA0, bB0, pP 0, qQ0)
. (19)

‡However,θµ

x
measures the slope of the rate law in a double logarithmic plot.



Thus, obviously,θµ+

a = 1 − α andθµ
−

a = α, with α depending on the functionf(A, B, P, Q).
However, within the matrixΛ one additional parameter arises, corresponding to the cycling
flux.

In the following, our analysis is entirely based on an interpretation of the saturation parameters and
does not make any use of the explicit functional form of the rate equations.



An Illustrative Example

Though the hypothetical pathway given in Fig. 1 serves only illustrative purposes, we provide a brief
analysis of its dynamical capabilities.

ν1 ν2 ν3
G 2 T

Following the model proposed in Ref. (5), one unit of glucose(G) is converted into two units of ATP
(T), with ATP exerting a positive feedback on its own production.
We assume that the average concentrationsG0 andT 0 of both reactants have been determined experi-
mentally. The stoichiometric matrixN, with its associated null-spaceK = [1 1 2]T, reveals that there
is only one independent reaction ratev1 = c. This information enables the construction of the matrix
Λ and defines the operating point of the system (see main text for details).
The only free parameters at the observed operating point arethus the normalized degree of saturation
θ2
G ∈ [0, 1] of ν2 with respect to its substrate glucose (G) and the normalizeddegree of saturation

θ3
T ∈ [0, 1] of ν3 with respect to its substrate ATP (T). Furthermore , the feedback of ATP uponν2 is

measured byθ2
T ∈ [0, n], wheren ≥ 1 denotes a positive integer. Given these parameters, we are in a

position to investigate quantitatively the bifurcations inherent to structure of the Jacobian.
The two-dimensional pathway gives rise to a Hopf bifurcation, which indicates the emergence of
sustained oscillations, independent from any further assumptions about the biochemical rate laws.
Fig. 10 shows the bifurcation diagram of the system at the (assumed) experimentally observed op-
erating point. The blue surface denotes the Hopf bifurcation, above which the steady state(G0, T 0)
loses its stability. As can be observed, with increasing saturation of the reactions (θ2

G andθ3
T → 0) the

oscillatory region increases in size, i.e., the Hopf bifurcation occurs for lower values ofθ2
T.

The red surface denotes the emergence of a pair of complex conjugate eigenvalues: in between the red
and blue surfaces the system exhibits an oscillatory returnto the asymptotically stable steady state.
The right plot in Fig. 10 shows a cut through the diagram atθ2

G = 1 (linear dependence ofν2 on its
substrateG, no saturation), corresponding to the case studied by Bieret al.(5) using explicit differen-
tial equations. Inbetween both lines, the system exhibits an oscillatory return to the stable steady state.
Note that since the pathway only consists of two metabolites, bifurcations of higher codimensions,
such as a double Hopf bifurcation, cannot arise.



Dynamics and Bifurcations

One of the foundations of our approach is the fact that knowledge of the Jacobian matrix alone is
sufficient to deduce certain characteristic bifurcations of a metabolic system. In general, the stability
of a steady state is lost either in a Hopf bifurcation (HO) or in a bifurcation of the saddle-node (SN)
type, both of codimension-1. At an SN bifurcations a single zero eigenvalue of the Jacobian appears
as the number or stability of steady states changes. Bifurcations of the SN type often indicate the
presence of multiple steady states.
As the only other local codimension-1 bifurcation, a Hopf bifurcation occurs as a complex conjugate
pair of eigenvalues crosses the imaginary axis towards positive real parts. This gives rise to (at least
transient) oscillations as the stability of the steady state is lost. Note that it is not possible to distin-
guish between a sub- and supercritical Hopf bifurcation solely on basis of the Jacobian.
Of particular interest to reveal insights about the dynamical behavior of systems are also bifurca-
tions of higher codimension, such as a Takens-Bogdanov (TB), a Gavrilov-Guckenheimer (GG), or
a double Hopf (DH) bifurcation. Each of these local bifurcations of codimension-2 arises out of an
interaction of two codimension-1 bifurcations and has important implications for the possible dynam-
ical behavior. For instance, a TB bifurcation indicates thepresence of a homoclinic bifurcation and
therefore the possibility of spiking or bursting behavior.The presence of a GG bifurcation shows that
complex (quasiperiodic or chaotic) dynamics exist generically in a certain parameter space. In the
same way a DH bifurcation indicates the generic existence ofa chaotic parameter region. For a more
thorough mathematical description, see refs. (6) and (7).



THE GLYCOLYTIC PATHWAY

The first example within the main text is a medium-complexityrepresentation of the anaerobic gly-
colytic pathway, adapted from earlier kinetic models (4,8):

NAD+

NAD+

NAD+

Pyr

NADH

2 ADP

ν1 ν2 ν3 ν5ν4

ν6
ν7

ν8

Glc

2 ADP

FBP

2 ATP

BPGTP

NADH

NADH
2 ATP

EtOH

ATP ADP

Metabolite abbreviations are as follows: Glucose (Glc), fructose-1,6-biphosphate (FBP), pool of
triosephosphates (TP), 1,3-biphsophoglycerate (BPG), pool of pyruvate and acetaldehyde (Pyr), and
ethanol (EtOH). Glc and EtOH are assumed to be the external source and sink, respectively.

The stoichiometric matrixN is as follows:

ν1 ν2 ν3 ν4 ν5 ν6 ν7 ν8

FBP +1 -1 0 0 0 0 0 0
TP 0 +2 -1 0 0 0 -1 0
BPG 0 0 +1 -1 0 0 0 0
Pyr/ACA 0 0 0 +1 -1 -1 0 0
ATP -2 0 0 +2 0 0 0 -1
NADH 0 0 +1 0 -1 0 -1 0
NAD+ 0 0 -1 0 +1 0 +1 0
ADP +2 0 0 -2 0 0 0 +1

The rank of the stoichiometric matrix isrank(N) = 6, corresponding to the6 steady-state mass
conservation constraints. Thus, all feasible steady-state flux vectorsν(S0) can be described by two
basis vectorski:
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The Choice of the Operating Point

To evaluate the structural kinetic model, we focus on a specific experimentally observed operating
point of the system. However, in the case of sustained oscillations, the (in this case unstable) steady
state cannot be observed directly. Within the main text, we thus approximate the operating point at
which the system is to be evaluated by the average of the observed concentration and flux values, as
reported in (4,9):

average metabolite concentrations [mM] flux values [mM · min−1]
FBP TP BPG Pyr ATP NADH NAD ADP c1 c2

5.1 0.12 0.0001 1.48 2.1 0.33 0.67 1.9 20.0 30.0
.

These values, together with the stoichiometric matrixN, fully specify the matrixΛ.

The approximation by the average quantities is justified by the assumption that in most cases the ac-
tual unstable state of the system is reasonably close to the average values. However, to ascertain that
our result do not depend crucially on the exact knowledge of the operating point, we have to repeat
the analysis, including variation of the assumed unstable steady state.
Fig. 11 exemplifies the small deviation between the actual unstable state and the average of the ob-
served values, using an explicit model of the glycolytic pathway (parameters as in Fig. 3d). As we do
not assume precise knowledge of the operating point, we allow for some variation around the average
of the experimentally observed values, as depicted in Fig. 11Right.
Figure 12 repeats the analysis shown in Fig. 3, but includinga relative 20% variation in each steady-
state variable (choosen from a gaussian centered at the average observed values). As can be observed,
the results do not depend crucially on the precise knowledgeof the actual unstable steady state. The
transition to (at least transient) oscillatory behavior isrobust with respect to the assumed unstable
state.

Note: A similar situation also arises in the evaluation of explicit kinetic models: Any explicit model
will eventually result in a numerical simulation of a particular set of parameters, and it is far
from certain, and indeed rather unlikely, that these are theexact parameters of the actual system.
An appropriate way to account for this, though computationally demanding and only rarely
done for explicit models, is to repeat the analysis for a large set of parameters in close vicinity
of the original set of parameters (thus to ensure that the observed behavior indeed persists and
is not an artifact of one particular set of parameters).

Note: A similar strategy can be adopted if large fluctuations of theexperimentally observed concen-
trations are observed. In this case, it is appropriate not tofocus only on one specific state, but
to include the fluctuations into the evaluation of the system.

Note: While often the mean of the observed concentration values isindeed a reasonable approxima-
tion of the actual state, this must not always be the case. In particular, when the experimentally
observed concentration values follow a strongly skewed distribution (such as a power law), the
mean is no longer appropriate. In this case, the (vicinity ofthe) state at which the Jacobian
is to be evaluated has to be chosen in accordance with the distribution of the experimentally
observed concentration values.
Similar, one may refine the range of variation shown in Fig. 12by including amplitude and
covariance of the experimentally observed concentration values.



The Structural Kinetic Model

Second, the dependence of each reaction on the metabolites has to be specified as follows:

FBP TP BPG Pyr/ACA ATP NADH NAD+ ADP
ν1 0 0 0 0 θ1

ATP 0 0 0
ν2 θ2

FBP 0 0 0 0 0 0 0
ν3 0 θ3

TP 0 0 0 0 θ3
NAD 0

ν4 0 0 θ4
BPG 0 0 0 0 θ4

ADP

ν5 0 0 0 θ5
Pyr 0 θ5

NADH 0 0
ν6 0 0 0 θ6

Pyr 0 0 0 0
ν7 0 θ7

TP 0 0 0 θ7
NADH 0 0

ν8 0 0 0 0 θ8
ATP 0 0 0

For simplicity all reactions are irreversible and depend ontheir substrates only, resulting in12 free
saturation parameters. The dependence ofν1 on ATP is given asθ1

ATP = 1 − ξ with ξ ∈ [0, n].
To obtain an explicit representation of the matrixθµ

x
, we have to take into account the two con-

servation relations ATP+ADP = const. and NAD+ + NADH = const. Using the definitionβ1 =
[ATP]0/[ADP]0 andβ2 = [NADH]0/[NAD+]0, we obtain

θµ

x
=















0 0 0 0 1 − ξ 0
θ2
FBP 0 0 0 0 0
0 θ3

TP 0 0 0 −β2 · θ
3
NAD

0 0 θ4
BPG 0 −β1 · θ

4
ADP 0

0 0 0 θ5
Pyr 0 θ5

NADH

0 0 0 θ6
Pyr 0 0

0 θ7
TP 0 0 0 θ7

NADH

0 0 0 0 θ8
ATP 0















.

Note: Generally, conserved pools of metabolites reduce the number of independent variables. Con-
sider the caseS1 + S2 = const., then

x1 + x2
S0

2

S0
1

= const. (21)

The dependence of each normalized reaction rateµ onx1 can thus be written in terms ofx2 and
the partial derivative with respect tox2 transforms into

θµ
x2

−→ θµ
x2

−
S0

2

S0
1

θµ
x1

. (22)

Similar for the more general case
∑

i miSi = const., wheremi denotes a constant integer.
Then

xk = const −
∑

i6=k

mi

mk

S0
i

S0
k

xi . (23)

and the partial derivatives have to be replaced accordingly(seeThe Photosynthetic Calvin Cyclefor
an explicit example).



The Matlab Code
function [J] = GlycolysisJacobian
% The (schematic) function returns the normalized Jacobian
% of the model depicted in Fig. 2.

% The colum vector of metabolite concentrations
X0 = [FBP TP BPG Pyr ATP NADH NAD ADP]’;

% The stoichiometric matrix
N=[ +1 -1 0 0 0 0 0 0 ;

0 +2 -1 0 0 0 -1 0 ;
0 0 +1 -1 0 0 0 0 ;
0 0 0 +1 -1 -1 0 0 ;

-2 0 0 +2 0 0 0 -1 ;
0 0 +1 0 -1 0 -1 0 ;
0 0 -1 0 +1 0 +1 0 ;

+2 0 0 -2 0 0 0 +1 ];

% The null space of N
K =[1 1;

1 1;
1 2;
1 2;
0 2;
1 0;
1 0;
0 2];

% The row vector of steady state fluxes
c1=20.0; c2=30.0; v=(K * [ c1 ; c2 ])’;

% Define the matrix LAMBDA
N0=N(1:6,:);
LAMBDA=N0.* v(ones(6,1),:);
LAMBDA=LAMBDA./X0(1:6,ones(8,1));

% Construct the matrix of saturation coefficients
t; % a vector containing the 11 nonzero elements of theta
xi; % A parameter specifying the feedback
b1 = ATP/ADP; b2 = NADH/NAD;

% The matrix theta
theta = [ 0 0 0 0 1-xi 0 ;

t(1) 0 0 0 0 0 ;
0 t(2) 0 0 0 -b2 * t(3);
0 0 t(4) 0 -b1 * t(5) 0 ;
0 0 0 t(6) 0 t(7);
0 0 0 t(8) 0 0 ;
0 t(9) 0 0 0 t(10);
0 0 0 0 t(11) 0 ];

% The Jacobian matrix in terms of the normalized variables
J = LAMBDA* theta; % the scaled Jacobian



An Explicit Kinetic Model

To verify the dynamical behavior predicted by the Jacobian,we use an explicit kinetic model of the
pathway (see Fig. 3).
Following the model of Wolfet al.(4), all rate equations are modeled as bilinear mass-actionνi(S) =
ki

∏
Si. Only the combined PFK-HK reactionν1 contains a nonlinear saturable term (see above).

ν1 = k1 [Glc][ATP] f([ATP]) with f([ATP]) =

[

1 +

(
[ATP]

KI

)n ]−1

. (24)

The parameters are chosen such that the model reproduces thedesired steady stateS0. In particular,
for the bilinear rate equationski = v0

i /
∏

S0
i . For the combined PFK-HK reaction, we have to specify

the parametersk1 andKI , using

KI = [ATP]0
(

ξ

n − ξ

) 1

n

and k1 =
v0
1

[Glc]0[ATP]0
n

ξ
, (25)

with an exponentn = 4 (4). In this way, the explicit model is consistent with the structural kinetic
model used in Fig. 3. All saturation parameters areθµ

x = 1, exceptθ1
ATP = 1 − ξ with ξ ∈ [0, 4).

Note: Not all explicit kinetic models can reproduce all possible Jacobian matrices of the full struc-
tural kinetic model. For example, by using only bilinear rate equations all saturation parameters
are restricted to the unit value. However, it is always possible to construct an explicit model
that is consistent with a given Jacobian.



Analysis of the Structural Kinetic Model

In the following, we provide additional figures with respectto the analysis of the yeast glycolytic
pathway depicted in Fig. 2.

Note: Similar to conventional modeling, all results of course depend on the initial (stoichiometric)
definition of the model itself. Prior to the analysis it has tobe specified whether certain reac-
tions are to be included in the model, whether cofactors are considered explicitely or assumed
constant, as well as which reactions are treated as reversible or irreversible. As with explicit ki-
netic modeling, based on differential equations, these decisions will affect the properties of the
system. In our case, all results relate to the medium complexity representation of the pathway
shown in Fig. 2.

As one of its primary features, the method described in the main text allows one to explore rather
large regions of the parameter space and serves to identify crucial reaction steps that predominantly
contribute to the stability of the system. To this end, the saturation parametersθµ

x ∈ [0, 1] are sampled
repeatedly from a given (in this case uniform) distribution.
Relating to Fig. 4, we look for reaction parameters that exhibit a strong correlation with the stability
of the system (see text for details). The correlation coefficient between the stability, measured by the
largest real part of the eigenvalues of the Jacobian, and the11 saturation parameters is estimated as:

θ2
FBP θ3

TP θ3
NAD+ θ4

BPG θ4
ADP θ5

Pyr θ5
NADH θ6

Pyr θ7
TP θ7

NADH θ8
ATP

0.40 0.27 0.03 0.00 -0.00 0.28 0.01 -0.23 -0.20 -0.03 -0.55
.

An alternative, and maybe more appropriate way to assess theimpact of each reaction parameter upon
the stability of the system, is to select for instances of theJacobian that result in a stable operating
point. Subsequently, the distribution of parameters of these Jacobians is compared to the initial (here:
uniform) distribution of the parameters. The approach is visualized in Fig. 13. Importantly, in this
way we only rely on a comparision of distributions and the results do not depend on the shape of the
initial distribution.
Fig. 14 repeats the analysis for several other saturation parameters. As can be observed, in some cases
the resulting distribution is markedly changed, indicating that these saturation parameters contribute
predominantly to the stability of the system.

Note: λmax
R < 0 implies stability of the operating point and is a necessary condition to actually

observe the system at a steady state with the experimentallygiven metabolite concentrations
and flux values. However,λmax

R < 0 does not imply global stability of the operating point, i.e.,
there might be coexisting attractors, such that for a large enough perturbations the system will
not return to the operating point.



THE PHOTOSYNTHETIC CALVIN CYCLE

Displayed below is the reaction scheme of the photosynthetic Calvin cycle, adapted from earlier
kinetic models (3, 10). The systems consists of18 metabolites, subject to two conservation relations,
and20 reactions, including3 export reactions, starch synthesis, and regeneration of ATP. The rank
of the stoichiometric matrix isrank(N) = 16, leaving4 independent steady-state reaction rates. The
model describes chloroplast metabolism with triosephosphate (TP) export and starch production as
main output processes. For details, see the the original publications.

CO2

PGA

RuBP

ADP

ATP

Pi

DHAP GAP BPGA

Pi PiPi

DHAP GAP PGA

ATPADP

Chloroplast

Medium

NADPHPi

NADP

FBP

Pi

F6P

E4P

SBP

Ru5P

ADP

R5P

ATP

Pi

S7P

X5P

G6P

G1P
ATP

ADP
Pi

light

Starch

Pext Pext Pext

Metabolite abbreviations are as follows: phosphoglycerate (PGA), Bisphosphoglycerate (BPGA),
glyceraldehyde phosphate (GAP), dihydroxyacetone phosphate (DHAP), fructose 1,6-bisphosphate
(FBP), fructose 6-phosphate (F6P), glucose 6-phosphate (G6P), glucose 1-phosphate (G1P), ery-
throse 4-phosphate (E4P), sedoheptulose 1,7-bisphosphate (SBP), sedoheptulose 7-phosphate (S7P),
xylulose 5-phosphate (X5P), ribose 5-phosphate (R5P), ribulose 5-phosphate (Ru5P), ribulose 1,5-
bisphosphate (RuBP), inorganic phosphate (Pi).

In this section, we focus on an analysis of the model at a specific operating point, corresponding to
the case investigated with previous kinetic models and describing the pathway under conditions of
light and CO2 saturation. All metabolite concentrations are as reportedin refs (3) and (10) (in [mM]).

PGA BPGA GAP DHAP FBP F6P E4P SBP S7P X5P

0.59 0.001 0.01 0.27 0.024 1.36 0.04 0.13 0.22 0.04
,

and (in [mM])

R5P Ru5P RuBP G6P G1P ATP ADP P

0.06 0.02 0.14 3.12 0.18 0.39 0.11 8.1.



The system is characterized by four independent steady-state fluxes, chosen here as the main export
fluxes (in [mM· min−1]).

νstarch νPGA νGAP νDHAP

0.16 7.1 0.56 12.0
.



Analysis of the Structural Kinetic Model

The experimentally observed operating point is stable for most realizations of the Jacobian. Fig. 15
shows the percentage of stable models with respect to ensemble size (number of realizations). As
we are mostly interested in typical realizations, the percentage of stable models converges rather fast,
despite the large number of parameters.

Similar to the glycolytic pathway, we examine the impact of individual reaction steps upon the sta-
bility of the system. Or rather, vice versa, we ask whether there are specific values of saturation
parameters that would make the system prone to instability.Fig. 16 shows such a scenario, together
with the unrestricted distribution of the largest real partwithin the spectrum of eigenvalues.
Since most models haveλmax

R < 0, we compare the distribution of saturation parameters for models
with λmax

R > 0 with the initial distribution. Marked changes are found forthe triosephosphate iso-
merase (TBI: GAP↔ DHAP) with respect to GAP and for the G3P dehydrogenase (G3Pdh: BPGA+
NADPH↔ GAP + NADP + Pi) with respect to BPGA, see Fig. 17. In both caseshigh saturation (θµ

x

small) leads to instability, as is verified in Fig. 16. Note that both reactions are not saturated in the
original model, thus avoiding the instability.



The Matlab Code
function [J,Jx,CS,CJ] = CalvinCycle(t,p);
% The (schematic) function returns the normalized Jacobian
% of the model depicted in Fig. 6 of the manuscript.
% Note that this is a schematic function and
% not optimized for computational performance.

% The stoichiometric matrix
N = [ 2 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0;

0 1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;
0 0 1 -1 -1 0 -1 0 0 -1 0 0 0 0 0 0 0 0 -1 0;
0 0 0 1 -1 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 -1;
0 0 0 0 1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0;
0 0 0 0 0 1 -1 0 0 0 0 0 0 -1 0 0 0 0 0 0;
0 0 0 0 0 0 1 -1 0 0 0 0 0 0 0 0 0 0 0 0;
0 0 0 0 0 0 0 1 -1 0 0 0 0 0 0 0 0 0 0 0;
0 0 0 0 0 0 0 0 1 -1 0 0 0 0 0 0 0 0 0 0;
0 0 0 0 0 0 1 0 0 1 0 -1 0 0 0 0 0 0 0 0;
0 0 0 0 0 0 0 0 0 1 -1 0 0 0 0 0 0 0 0 0;
0 0 0 0 0 0 0 0 0 0 1 1 -1 0 0 0 0 0 0 0;

-1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0;
0 0 0 0 0 0 0 0 0 0 0 0 0 1 -1 0 0 0 0 0;
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 -1 0 0 0 0;
0 -1 0 0 0 0 0 0 0 0 0 0 -1 0 0 -1 1 0 0 0;
0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 -1 0 0 0;
0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 2 -1 1 1 1 ];

% The Null Space K
K = [6 3 3 3;

12 5 6 6;
12 5 6 6;

5 2 2 3;
3 1 1 1;
3 1 1 1;
2 1 1 1;
2 1 1 1;
2 1 1 1;
2 1 1 1;
2 1 1 1;
4 2 2 2;
6 3 3 3;
1 0 0 0;
1 0 0 0;
1 0 0 0;

19 8 9 9;
0 1 0 0;
0 0 1 0;
0 0 0 1];



% DEFINE OPERATING POINT
% flux values
c1 = 0.289;
c2 = 12.74;
c3 = 1.0;
c4 = 21.6;
A = [c1 c2 c3 c4]’;

A = A* 1000/1800; % to obtain units in [mM/min]
V=K* A; % the vector of steady state fluxes

% Define Concentrations (in [mM])
PGA = 0.59;
BPGA = 0.001;
GAP = 0.01;
DHAP = 0.27;
FBP = 0.024;
F6P = 1.36;
G6P = 3.12;
G1P = 0.18;
SBP = 0.13;
S7P = 0.22;
E4P = 0.04;
X5P = 0.04;
R5P = 0.06;
Ru5P = 0.02;
RuBP = 0.14;
P = 8.1;
ATP = 0.39;
ADP = 0.5-0.39;

X0 = [PGA BPGA GAP DHAP FBP F6P E4P SBP S7P X5P R5P Ru5P RuBP G6P G1P ATP ADP P ];

% Define Matrix of Saturation parameter
t; % vector of substrate saturation (28 parameters)
p; % global product inhibition

theta = [ -p 0 0 0 0 0 0 0 0 0 0 0 t(1) 0 0 0 0 0;
t(2) -p 0 0 0 0 0 0 0 0 0 0 0 0 0 t(3) -p 0;

0 t(4) -p 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -p;
0 0 t(5) -p 0 0 0 0 0 0 0 0 0 0 0 0 0 0;
0 0 t(6) t(7) -p 0 0 0 0 0 0 0 0 0 0 0 0 0;
0 0 0 0 t(8) -p 0 0 0 0 0 0 0 0 0 0 0 -p;
0 0 t(9) 0 0 t(10) -p 0 0 -p 0 0 0 0 0 0 0 0;
0 0 0 t(11) 0 0 t(12) -p 0 0 0 0 0 0 0 0 0 0;
0 0 0 0 0 0 0 t(13) -p 0 0 0 0 0 0 0 0 -p;
0 0 t(14) 0 0 0 0 0 t(15) -p -p 0 0 0 0 0 0 0;
0 0 0 0 0 0 0 0 0 0 t(16) -p 0 0 0 0 0 0;
0 0 0 0 0 0 0 0 0 t(17) 0 -p 0 0 0 0 0 0;
0 0 0 0 0 0 0 0 0 0 0 t(18) -p 0 0 t(19) -p 0;
0 0 0 0 0 t(20) 0 0 0 0 0 0 0 -p 0 0 0 0;
0 0 0 0 0 0 0 0 0 0 0 0 0 t(21) -p 0 0 0;
0 0 0 0 0 0 0 0 0 0 0 0 0 0 t(22) t(23) -p -p;
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 t(24) t(25);

t(26) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -p;
0 0 t(27) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -p;
0 0 0 t(28) 0 0 0 0 0 0 0 0 0 0 0 0 0 -p ];



% The reduced stoichiometric matrix, omitting ADP and P (mas s conservation)
NN=N(1:16,:);

% The Link matrix, such that N = L * NN;
L=[diag(ones(16,1)) ;

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1;
-1 -2 -1 -1 -2 -1 -1 -2 -1 -1 -1 -1 -2 -1 -1 -1];

% TAKE MASS CONSERVATION INTO ACCOUNT
% 1) ADP + ATP = const
% replace partial derivatives
dmdxR=dmdx(:,1:16);
LL = L(17,:). * X0(1:16)/ADP;
ix = find(dmdx(:,17)˜=0);
for i=1:length(ix);

dmdxR(ix(i),:) = dmdxR(ix(i),:) + LL * dmdx(ix(i),17);
end;

% 2) Pi = sum S_i
% replace using the link matrix
LL = L(18,:). * X0(1:16)/P;
ix = find(dmdx(:,18)˜=0);
for i=1:length(ix);

dmdxR(ix(i),:) = dmdxR(ix(i),:) + LL * dmdx(ix(i),18);
end;

% DEFINE JACOBIAN
V = V’;
X0 = X0’;
LAMBDA = NN.* V(ones(16,1),:);
LAMBDA = LAMBDA./X0(1:16,ones(20,1));

J=LAMBDA* dmdxR;

% convert into original variables if needed
Jx=J;
for i=1:16; Jx(i,:)=Jx(i,:) * X0(i);end
for i=1:16; Jx(:,i)=Jx(:,i)/X0(i);end

% Control Coefficients
CS = -L * (JJxˆ(-1) * NN);

% Flux Control Coefficients
AA = V(ones(18,1),:)’./X0(1:18,ones(20,1))’;
CJ = diag(ones(20,1))+(AA. * dmdx) * CS;



References

1. Heinrich, R. & Schuster, S. (1996)The Regulation of Cellular Systems(Chapman & Hall, New
York).

2. Rohwer, J. M. & Botha, F. C. (2001)Biochem. J., 358, 437–445.

3. Petterson, G. & Ryde-Petterson, U. (1988)Eur. J. Biochem.175, 661–672.

4. Wolf, J., Passarge, J., Somsen, O. J. G., Snoep, J. L., Heinrich, R. & Westerhoff, H. V. (2000)
Biophys. J.78, 1145–1153.

5. Bier, M., Bakker, B. M. & Westerhoff, H. V. (2000)Biophys. J.78, 1087–1093.

6. Gross, T. (2004)Population Dynamics: General Results from Local Analysis(Der Andere Verlag
Tönning, Germany).

7. Kuznetsov, Yu. A. (1995)Elements of Applied Bifurcation Theory(Springer, Berlin).

8. Nielsen, K., Sørensen, P. G., Hynne, F. & Busse, H. G. (1998) Biophys. Chem.72, 49–62.

9. Hynne, F., Danø, S. & Sørensen, P. G. (2001)Biophys. Chem.94, 121–163.

10. Poolman, M. G., Fell, D. A. & Thomas, S. (2000)J. Exp. Bot.51 (GMP Special issue), 319–328.




