Contact processes and moment closure on
adaptive networks

Anne-Ly Do and Thilo Gross

Abstract Contact processes describe the transmission of distiopgpties of nodes

via the links of a network. They provide a simple frameworkrftany phenomena,
such as epidemic spreading and opinion formation. Comg@yinontact processes
with rules for topological evolution yields an adaptivewetk in which the states

of the nodes can interact dynamically with the topologieimes of freedom. By
moment-closure approximation it is possible to derive dimensional systems of
ordinary differential equations that describe the dynanoicthe adaptive network
on a coarse-grained level. In this chapter we discuss theogippation technique

itself as well as its applications to adaptive networks. §liican serve both as a
tutorial as well as a review of recent results.

1 Introduction

Contact processes are based on an elementary observatibniduials are altered
and shaped through interaction with others. Equally badice observation that in-
dividuals can often decide with whom to interact. Both ofsthebservations can be
modeled by a single network, in which nodes correspond twithgials while links
correspond to interpersonal connections. The dynamidi®hetwork is governed
by two processes: Topology-dependent transmission ofrdiazd states of individ-
uals, and state-selective evolution of the links. Hence ctbmbination of the two
gives rise to an adaptive network [9].
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Within the framework of contact processes on adaptive nésyattention has
focused particularly on opinion formation [4, 6, 7, 24, 2, 12, 15, 16] and epi-
demic spreading [11, 23, 10, 20, 21, 25, 8].

Comparing the models studied in the context of the diffeapiications reveals
many similarities and some distinct differences. Similasiare found mainly in the
general set-up of the models. First, the transmission tdsta strictly limited to the
neighborhood of a node. Second, to account for differencesg individuals and
to facilitate computation, the processes in the model ageireral defined stochas-
tically. Third, concerning the topological evolution, thast majority of models al-
lows only for rewiring of links. In contrast to other processrewiring conserves
the number of nodes and links, which is advantageous for niaadsimulation. Fi-
nally, all numerical models discussed in this chapter applasynchronous update
procedure, in which a randomly selected node is updatedyiroaa step. This is
believed to yield the best approximation to a continuoug taystem [3].

The differences between models of epidemics and modelsinioopformation
arise mainly from differences in the physics of the undedyieal-world processes:
In epidemics, it exists an objective difference betweeadtdd and healthy individ-
uals, and the processes are inherently state-specificnidaion can be transmitted
along the links, while it is obvious that the same is not pgasdior the healthy state.
By contrast, in models of opinion formation the differentrapns are in general
treated equally and therefore appear symmetrically in théeh One important con-
sequence of the state-dependence of epidemic proceskasasltlitional processes
have to be introduced in the model if the number of statesi®ased. Indeed, many
models of epidemics extent the scenario of healthy andtedeindividuals by ad-
ditional states to model distinct temporal phases of theciidn. However, if for
instance a state is introduced, which corresponds to ididals that have recovered
from the disease, new processes have to be formulated thetrgtansitions to and
from this state. Conversely, the symmetry of state-depecele opinion-formation
processes enables us to increase the number of states twitbi@asing the number
of processes in the system. On the one hand this means thstieansyith a small
number of opinions greater than two will behave very sinhlao a system with
just two opinions [16]. On the other hand it allows to consiglgstems in which
infinitely many opinions compete based on a finite number of@sses.

Regardless of the model, the investigation of contact msE®0Nn adaptive net-
works poses characteristic difficulties. Full agent-basedilations are fundamen-
tally inefficient. In order to determine the long-term beloawf the system we have
to simulate for a long time. During this time the simulatioguces information,
namely a dynamical trajectory, which comes at a computatioost although it is
generally not used in the analysis of the system. By contiiasttheory of dynam-
ical systems offers many tools, such as Newton’s Method @ndclation analysis,
that enable us to determine the long-term behavior of theesyslirectly. In or-
der to apply these methods the adaptive network needs todeeilled in terms of
emergent variables, governed by differential equationdisgrete time maps. For
contact processes, convenient variables are the derddittestain subgraphs called
network moments. Anoment expansion of the dynamics results in an infinite cas-
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cade of differential equations. This cascade can be traddat amoment-closure
approximation which is explained below. In practice, it is often sufficiemapprox-
imate the network by a small number of differential equagif g. 3), which allows
for analytical treatment of the system.

In this chapter, we aim to provide an overview of recent gtsdioncerned with
contact processes on adaptive networks. Throughout thedees certain system
level phenomena, like the emergence of state homogenebpe@uiations, are
found to recur. The underlying mechanisms of these phenarmenaddressed and
compared. In Sec. 2 various papers are reviewed which tpeaioo formation by
means of different models. A comparison of these modelsigesinsights into the
topic per se and, moreover, into the relation between the microscopésrand the
system level behavior. Sec. 3 focuses on models of epidgareading. The applica-
tion of an moment closure approximation is demonstrated égma of the adaptive
SIS-model. Thereafter we launch into a more general digmugsd moment clo-
sures. In particular we emphasize that the adaptivity ofntsvork improves the
efficiency of this tool.

2 Opinion formation - theme and variations

Models of opinion formation explore the spreading of opitsidn social networks.
Current models assume that this spreading is governed bydmpeting processes:
social adjustment and social segregation. The former mbahsonnected individ-
uals adjust their views, the latter that individuals mamtzontacts preferentially
to like-minded individuals. In general, both processesicedthe number of links
between nodes with conflicting opinions and lead to the foionaf homogeneous
social communities holding a uniform opinion. A network wahiis entirely com-
posed of sucltonsensus communities is said to be in theonsensus state. While
almost all models ultimately reach a consensus state, thveogence time. and
the distribution of community sizé% can differ markedly depending on the relative
rate of the competing processes.

As interpersonal interactions are highly complex and diffito capture in mod-
els, a variety of different modeling approaches have beepgsed. This diversity
provides the opportunity to investigate which details @ thicroscopic description
affect the system level properties. Below, models of opirfi@ymation are compared
that differ mainly in the three aspects subsequently desdri

The first aspect concerns the number of opinions in the médeke have men-
tioned above, essentially two cases have to be distingdidhedels in which only
two alternative opinions exist, and those in which indidttucan choose from a
continuous spectrum of opinions. The first, so-caNetkr-like approach models
typical electoral decisions, where the number of choicémised by the number of
candidates. The second approach applies to opinions suehgsus belief, where
in principle an infinite number of choices exists.
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The second aspect in which models differ is the treatmenbvcibssegregation.
A link that connects individuals with conflicting opinionarc either be rewired or
broken entirely. In the first case the number of links is covess, and therefore the
process is reversible. In the second case the number ofifirdecreased, therefore
the process is irreversible unless it is counteracted byhan@rocess in which new
links are created. So far, the creation of links has hardgntmnsidered in models
of opinion formation as it causes numerical difficulties anloduces additional
complexities.

Another difference between the models is how the symmetisoofal interac-
tions is broken. In almost all models of opinion formationjustiment of views is
conceived as an asymmetric act. However, in the absencearbangter that mea-
sures the persuasive power or the social influence of anithdil; the implementa-
tion of asymmetry between interacting nodes is arbitrdmyel first randomly chose
a nodd and subsequently randomly chose one of its neighpdheni might either
adopt the opinion of or vice versa. The first option defines a so-catiedrse, the
second a so-calledirect update rule. It is known that both rules result in qualita-
tively different behavior [16].

In the following we discuss four major contributions to thébgect of opinion
formation on adaptive networks. Section 2.1 focuses on aemiogl Holme and
Newman, which features a continuous spectrum of opinior. Bocial segrega-
tion is modeled through rewiring and social adjustmentulgioan reverse opinion
update. The model which will be discussed in Sec. 2.2 can bsidered as oppo-
site approach: In Ref. [6] Gil and Zanette investigate aviike model, in which
social segregation is modeled through deletion of linkse frtodel by Kozma and
Barrat [14], which is discussed in Sec. 2.3, again consitferghoice between in-
finitely many opinions. The main difference to Ref. [12] istlsocial segregation
and social adjustment are restricted by an additional peternwhich can be inter-
preted as bounded tolerance. In Sec. 2.4 a paper of Nardai & addressed that
compares two voter-like models, both of which use identiealiring rules but dif-
fer with respect to the direct/reverse implementation efasymmetric adjustment
process [16].

2.1 Continuous opinions

Holme and Newman were the first to report that the diversitymfions sustained
in a society undergoes a phase transition if the relatieeabsocial adjustment and
social segregation crosses a critical threshold [12]. &ir haper, they consider the
case of opinions which are in principle unlimited in numi®mnoden is initially
assigned an opiniog, at random. In each timestep, a nade randomly chosen
and updated in one of two ways: With probability-dp, i is convinced by one of
his neighborg andg; is set to equag;. With probabilityg, nodei randomly selects
one of its links and reconnects it to a node with opingpn
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Note that this parameterization in termsgis advantageous as only the relative
rate of the two processes is important. Rescaling the surheofdtes of the two
processes to one normalizes the frequency of events to aneppate and thus
effects an optimization of simulation time.

In simulations, the system ultimately approaches a consestate, in which all
individuals in the same connected component hold the sam&opAs mentioned
above, there is no objective difference between differ@imions. Thus, analyzing
the consensus state it is not of interest which particulariops it features, but only
how many of them survived and how the followers are disteduf his information
is captured by the component-size distributign

Figure 1 summarizes the dependenc®gdn ¢. For ¢ = 0, no connections are
rewired, so the component-size distribution of the initealdom graph is conserved.
In arandom graph with mean degrgé > 1 there is one giant component of the size
O(N) andO(N) small components dD(1) (see Fig. 1 a). We therefore find a large
majority holding one opinion and many small groups holdiiifgdent opinions. For
¢@ =1, opinions never change, so the final cluster-size digtdbwequals the initial
distribution of opinions. In particular the giant componeplits into fragments of
finite size (see Fig. 1(c)).
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Applying a finite-size scaling analysis, Holme and Newmamnedale to show that
a critical parameter valug. =~ 0.458 exists, at which a continuous phase transition
takes place. At this transition the distribution of follow®; approaches a power-
law (Fig. 1(b)).

The convergence time. needed to reach the consensus state is shown to scale
differently in the regimes to both sides of the phase tramsitor ¢ = 1 1. scales
asN and forg = 0 as logN). For ¢ ~ @, 1 obeys a scaling relation of the form
N~Y with the critical exponeny = 0.614-0.15 based on numerical simulations.
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2.2 Two-valued choice and irreversible discord

The scenario that Gil and Zanette discuss in Ref. [6, 24]alesiin two respects
from the one investigated above. Firstly, the regarded inisdeoter-like which
means that choices are two-valued. Secondly, disagreaighlmors break con-
tact irrevocably. Starting from a fully connected networikhwandomly distributed
opinions, conflicts are settled by convincing neighborsudtireg links. As above,
rates of both processes are subsumed under one parametech is defined as the
probability of opinion transmission.

The dependence of the community-size distributiomgatescribed by Gil and
Zanette matches the results of Holme and Newman. Diffeeircéhe set-up are
solely mirrored by “boundary effects”: In the absence ofdiogical evolution the
number of opinions in the final state equals the number ofalhitdisconnected
communities, which is one in the case under consideratidrgasater than one in
[12]. In the opposite limit, i. e. without contact interamts, the number of discon-
nected communities in the final state equals the numbertidliopinions, which is
two in the model of Gil and Zanette and greater than two indlistolme and New-
man. For intermediate values qf(p respectively), the mean of the distributi®
shifts in both models from smaller to largeas contact interactions gain influence.

Let us now discuss the underlying mechanisms that lead timth@ation of sim-
ilar community-size distributions in the two different nadg. In both models, the
processes of social adjustment and social segregatiom onguon links between
disagreeing neighbors, which we therefore eaflive links. The consensus state
is reached when all of these active links have vanished.ofifjh segregation is
modeled by rewiring in [12] and by cutting links in [6] the et is in both cases
a reduction of active links. Social adjustment results ithbmodels either in an
activation or a deactivation of links. Note however, thatater-like models adjust-
ment reverses the state of all links connecting to the targde. By contrast, in
models with continuous opinions, active links connectiodhe target node may
remain active. Nevertheless, we know that both models ea#iptreach consensus
even without segregation, therefore social adjustmentdidscrease the number of
active linksin average.

While the effect of both, adjustment and segregation, isiénlong run a reduc-
tion of active links, both processes have a different immacthe consensus time
7c. As we have seen above, consensus through social adjustagines a conver-
gence time which scales liké. Social segregation significantly accelerates consen-
sus but separates neighbors, whose opinions could in tigeéom have converged
through social adjustment. Thus, increased segregatals ® increased fragmen-
tation, which explains the segregation-rate dependemiggeaof the distributioRs
as well as their independence of the differences betwedrafi®[6].

The link-deletion process in the model of Gil and Zanetteeads a phenomenon,
which is not obvious in the model of Holme and Newman. Evenigiicthe number
17c(q) of events necessary to reach consensus decreases withsieggethe num-
ber of segregation event$ — q)1¢(q) depends non-monotonically @p As shown
in Fig. 2, a critical parameter valugn exists, at which the fraction of remain-
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ing links in the consensus state is minimized, i. e. at whiameaimum number of
deletion events occur. This can be understood intuitivEiye fraction of remaining
links r is minimized if between two subsequent opinion flips the majof active
links is deleted but no consensus communities are isoléteslich a situation an
opinion flip almost exclusively activates links, the mafprof which will in turn
be deleted. If less than the critical number fjin Of active links are deleted, the
opinion flip not only activates but also inactivates linksiege inactive links, un-
less reactivated later, are not available for deletion,thodr increases. If on the
other hand more than-1qqin active links are deleted, the probability increases that
consensus communities are isolated. Internal links of soammunities can not be
activated in subsequent adjustment events, increasing
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Based on the similarity of the two compared models, it is albdel whether the
critical parameterg. in [12] corresponds to the same phase transitioggs in
[6]. Encouraging in this regard are recent findings of Vazgekal. that indicate
the existence of a generic fragmentation transition foledéint voter-like models
[22]. One may argue that the critical paramegers independent of the system size
while gmin decreases with growinly (cf. Fig. 2(b)). However, théN-dependence
of gmin is Only a result of the initial conditions chosen in [6]: Asethitial graph
is fully connected, an opinion-flip event affe€$N) links, whereas a link-deletion
event affects one link regardless of the system size. Tldivelrate of adjustment
and segregation events, which minimizes the fraction ofaiemg links, therefore
approaches zero M goes to infinity.

2.3 The influence of bounded tolerance

The influence of tolerance on opinion formation is invegegan [14, 15]. In these
papers, Kozma and Barrat consider a scenario where opin@mntake continuous
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values. A global parametédris introduced describing the tolerance range of individ-
uals. If opinions of neighbors are closer than the toleraaige, i. e. iﬂ gi —gj | <d,
both adopt the mean opinion with probability-dw. If opinions of neighbors differ
more than the tolerance rangagewires with probabilityw to a randomly chosen
nodek.

If defined in this way, bounded tolerance has two differeféa$: On the one
hand it reduces the selectivity of social segregation. @rother hand it enhances
selectivity of social adjustment. To illustrate these poilet us first consider the
effect of bounded tolerance in the absence of segregatidhid case a consensus
opinion in a component is only reached if tolerance intexedineighbors overlap.
Otherwise “tolerance patches” may form in which nodes acallg in consensus
but do not communicate with nodes outside the patch. In tt@seance patches
conflicting opinions can survive indefinitely and thus theigalence of topological
components and consensus communities in the final stat@kemrHowever, to
describe the final state we stick with the terminology, whies introduced above,
and only adapt the meaning of the term “consensus commusligyfitly: Used in the
present context, it refers to communities of like-mindedividuals which are nec-
essarily connected among themselves but not necessaldyad from individuals
of other communities. Kozma and Barrat show that, in the mtesef segregation,
three parameter regimes can be identified (cf. Fig. 3): Fgeltolerancel, the set-
up matches the = 0 case in Ref. [12]. Consequentially, the system reachest@ st
where nearly all nodes are belong to a single community eftiknded individu-
als. Only whend falls below a critical valual; ~ 0.256, the enhanced selectivity
of social adjustment is noticeable. Then, the final stateies polarized, i. e. two
macroscopic communities are observed to coexist with a euwitfinite size com-
munities. Finally, for very smatll, an extensive number of small communities form
an fragmented final state.

Fig. 3 Size of the largest
(open symbols) and second
largest (filled symbols) ho-
mogeneous opinion cluster
as a function of the toler-
anced. The color coding for
the system size is the same
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-8 N=2000

- N=5000 |
for the largest and second 44 N=20000
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the largest opinion cluster 1 I
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ent rewiring ratesv. Figure % o1 02 ks b4

extracted from [14]. d

The onset of rewiring is found to have different effects ia tfifferent parameter
regimes. On the one hand, it impedes complete consensusirgfes the rewiring
rate, the larger tolerance values are necessary to reaghe@monsensus (cf. inset
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Fig. 3). On the other hand, in the fragmented regime, it leads enlargement of
the consensus-community sizes. This can be explained lagvéolFor large toler-
ance, neighbors with overlapping tolerance intervalsgite®@pinions of neighbors
that differ more tham are altered through interaction with other neighboringesod
and eventually become closer thdnHence, the key to the formation of extended
communities lies in the possibility of repeated contactiiattions. As in the pre-
viously studied models, rewiring disconnects communjtiesnaturely and thereby
impedes complete consensus. For small tolerance, thélgéctor for the size of
consensus communities is the small number of neighbors avighlapping toler-
ance intervals. In this situation, rewiring allows eachetwlfind those nodes it can
communicate with and thus facilitates the merging of smaugs.

Indeed, the two different effects of rewiring can also bensieethe model of
Holme and Newman. The initial giant componentis split dueetairing. The initial
components of finite size, which corresponds to the limitro&B tolerance, gain
size (cf. Fig. 1).

2.4 Asymmetric insertion of influence

All models presented so far feature asymmetric interastiogtween a randomly
chosen node and a random neighbor. In contrast to a randdrosen node a ran-
dom neighbor is not drawn in an unbiased way — it is reachedligwing a link
and therefore nodes with higher degree are preferentieliicted as random neigh-
bors. The symmetry of node and neighbor in the rules of thealiedn some cases
broken by definition of the contact process [6, 12], and irecttby the definition
of the rewiring mechanism [12, 14]. The effect of the asynmnet the interactions
is studied by Nardini et al. [16] via a mean field analysis.dairet al. show that,
in case of inhomogeneous networks, the implementationecglymmetry may de-
cisively influence the behavior of the system. They compacevioter-like models
that differ with respect to the asymmetry of the opinion updaln both models each
timestep begins with choosing an individuand one of its neighborjsat random.
If i disagrees witlj, it cuts the link and establishes a new link to a randomly ehos
nodek with probability ¢. With probability 1— ¢, one of the two convinces the other
of its opinion. The difference in the models lies in the nddat is convinced. The
first alternative is a reverse voter-like model (rVM), in whi is convinced byj.
The second alternative is the direct voter-like model (dYidwhich j is convinced
byi.

Simulations show that in both models nodes of the majoritgiop have a higher
average degree than nodes of the minority opinion. Nodds higth degree, how-
ever, are preferentially selected as random neighpfts17], and hence, the ran-
dom neighborj is likely to hold the majority opinion. That is, of two disgergy
neighbors - a random nodend its random neighbdr- i probably holds the mi-
nority andj the majority opinion. In the rVM the majority opinion repnackes itself
asj convinces. Thus, once a disparity between both opinions emergesrgases.
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By contrast, in the dVM the majority opinion is repressedjas convinced byi.
Any disparity in the opinion distribution will therefore dargo damping.

In summary, adaptivity generates a positive feedback ie cdghe rvM im-
pelling the system toward an accelerated consensus. Inofdke dVM the gen-
erated feedback is negative resulting in a dynamical stagrevboth opinions are
in average equally represented. For the parameter valuesechin the paper no
consensus is reached in the latter case. Neverthelesd, reghabrks fluctuations
may still take the system eventually to an absorbing statéhioh one opinion van-
ishes. The different routes to consensus are reflected ispeeific convergence
time 1¢(N) observed in numerical simulations (see Fig. 4). For the rvMlisplays
a logarithmic scaling behaviag(N) O In(N) while for the dVM, 7¢(N) grows ex-
ponentially with the system size.

L 2001 T T T T T T

E | oo (=01 i
400 03

¢ @=05

b | ¢005

6

(@) (b)

Fig. 4 (a) Convergence time for the reverse voter-like model asation of the system size for
various rewiring rates. Inset: same for the direct votes-linodel. (b) Convergence time for the
direct (filled symbols) and reverse naming game. For eachnpeter set, data are averaged over
100 realizations of the system. Figure extracted from [16].

Remarkably, the qualitative differences between the dVl the rVM are set-
tled if an additional neutral state is introduced, whichhie tase in the so-called
naming game. In this scenario, change of opinion is impedéld sense that indi-
viduals have to pass a transient state before defectingtogposite view. As long
as an individual is in this state, it is accessible for cooiig attempts from rep-
resentatives of both opinions. To model the naming gameihiegtlal. choose the
following implementation: The competing opinions are gssd with the values-1
and—1 and the additional neutral state is denoted by 0. Conttertiations between
disagreeing neighbors alter the state of the passive nodelbyhereby the sign
depends on the state of the active node. If the active indalig in the neutral state,
it chooses to represent one of the opiniarisor —1 at random. In analogy to the
direct and reverse voter-like models, a distinction can leerbetween the direct
and reverse naming game depending on whether the randomondlde random
neighbor takes the active part.

On a static network the consensus tirgén naming games is known to scale like
In(N). Simulations yield that in the adaptive cag¢N) remains logarithmic irre-
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spective of the chosen modality of asymmetric opinion updett figure 4(b)). This
deviation from the behavior of voter-like models is eledy@explained by Nardini et
al.: Interactions via links between followers of the conipgbpinions comply with
the dynamics of the dVM (rVM respectively) and exhibit thexcdcteristic negative
(resp. positive) dynamical feedback. However, interaxgtiwith neutral nodes exert
a positive feedback regardless of whether the direct orseveile is used. As links
to neutral nodes are far more common than links to nodes ajffithesing opinion,
these links dominate the behavior and hence in total a peséedback is observed.

2.5 Other approaches

A slightly different setup for the contact process is exptbby Benczik et al. [2],
Grabowski and Kosihski [7] and Erhardt et al. [4]. Insteddacasional interactions
between two randomly chosen neighbors, they considertisihsawhere a node
is updated by evaluation of all influences from its entireghbiorhood. All three
models capture various additional properties. Thus, lessitternal state dynamics
Ehrhardt et al. include adjustable link creation and rerhpvacesses as well as
sophisticated partner selection mechanisms. Equallyoedddd are the topological
evolution rules Grabowski and Kosihski use: the idea ofrfatad tolerance is com-
bined with a set of parameters that model individually disttisociability. Further-
more, some links, which represent basic connections likelyaies, are excluded
from the topological changes. Finally, Benczik et al. inigeste a topological evo-
lution rule in which a continuous parameter captures théviddals’ tendency to
rather avoid or seek contact with dissenting individuats. fRore details we refer
to the original publications.

An interesting enhancement of the concept of bounded tuterés discussed
in [5]. In this paper, Gargiulo and Mazzoni replace the glabkerance parameter
by state dependent tolerance. The underlying hypothesisiisn realistic systems
tolerance decreases if opinions get extreme. Regrettalelgpproach is so far only
explored in simulations in which tolerance-dependenteggafion and tolerance-
dependent adjustment occur in consecutive temporal plo&gies evolution. So, an
exploration in the context of adaptive networks remainsgabne.

3 Epidemic spreading - Moment closure

Subsequently, we focus on models of epidemic spreadingsdbend, intensively
studied topic in the class of contact processes. Though butldels of epidemic
spreading and models of opinion formation, base on the girafdocally trans-

mitted properties, epidemiological models are essentififitinguished from those
discussed in Sec. 2. In epidemiological models, differérgle node states signify
different stages of a disease. However, this interpretatigposes far-reaching re-
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strictions on the processes modeling the transitions letvlee states. Thus, transi-
tions can only occur between appointed states, which resrofthe naming game
but differs from the scenario reviewed in Sec. 2.1. Moreptlee asymmetry of
the contact process is determined by the qualitative diffees of the states: Via
a link between an infected and a healthy individual, onlyitiffected state can be
spread. This is contrary to models of opinion formation vetteie asymmetry of the
convincing act was implemented arbitrarily. Lastly, constg states as stages of a
disease directly attaches a meaning to the transitionsseetatates. Hence, for each
state in an epidemiological model we have to formulate $jggmiocesses that gov-
ern transitions to and from this state. Note that also thereaif these processes is
determined by the states they connect. In practice, theacbptocess modeling the
transmission of the disease is often completed by purebl lmocesses describing
for instance the process of recovery, which is independemhodes neighborhood.

Due to the restrictions outlined above, the diversity of eledn the field of
epidemiology is much smaller than in the field of opinion fatian. While models
of opinion formation were shown to vary with respect to theliementation of
asymmetry, the number of states, and the topological eeolutiles, models of
epidemic spreading do not exhibit any variations with respethe implementation
of asymmetry. Variations in the number of single-node stae impeded as the
introduction of new states necessitates the introductioew processes. Variations
of the topological evolution rules are discussed, howaeverminor extend.

The substantial coherence among different epidemiolbgicaels allows us to
focus exemplarily on the adaptive SIS-model, which featwmy two states called
S, for susceptible, and I, for infected. By means of this $&mpodel, we illustrate
the conceptual and methodical framework likewise applyorgnore complicated
scenarios (Sec. 3.1). In particular, we demonstrate thanddandling omoment-
closure approximations, a common tool in epidemiology [13, 18, 19]. Section 3.2
launches variations and extensions of the basic SIS mdudslatm for more real-
ism [23, 25, 21]. Section 3.3 comprises more general corgidas concerning the
mathematical description by moment-closure approximatio

3.1 The adaptive SIS model

The simplest model, in which epidemic dynamics and topalaiggvolution can be
combined is the SIS model. It describes a scenario whereieditidual within a
social network is either susceptible (S) to the diseasenowesideration or infected
(). Contacts between individuals are denoted as SS-lBkbnks, and II-links ac-
cording to the states of the individuals they connect. Sutide individuals can
become infected if they are in contact with an infected irtlial. The transmission
of the disease along a given Sl-link is assumed to occur aegradnce an indi-
vidual has been infected she has a chance to recover, whigleha at a rateand
immediately returns the individual to the susceptiblesstit the adaptive SIS model
proposed by Gross et al. [11] another process completesrthe af infection and
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recovery: If a susceptible individual is connected to aedtéd individual she may
want to break the link and instead establish a new link totaratusceptible. On a
given Sl-link this rewiring occurs at a rate rate

Note that the rewiring process has been introduced ‘opticaity’”: Only sus-
ceptible nodes rewire, and they manage unerringly to retsiee node that is also
susceptible. Under these conditions rewiring always redttee number of links that
are accessible for epidemic spreading and thereforgrénalence of the disease,
i.e., the density of infected, is always reduced by this fafmewiring behavior.
Less optimistic rewiring rules have been explored by Z&n@8], and Zanette and
Risau-Gusman [20, 25] and will be addressed in Sec. 3.2.

Let us now study the dynamics of the adaptive SIS model wihdhbls of nonlin-
ear dynamics. For this purpose we need to derive a low-diimeakemergent-level
description of the system. Convenient observables, deecahoments, are given
through the densities of certain subgraphs. The numbenksd tontained in such a
subgraph is called the order of the respective moment. Digziproperties of the
moments, averaged over many realizations of the stochaisteess, can be sum-
marized in a system of ODEs. Due to the contact process, rawgynamics of
moments of orden essentially depend on moments of order 1, resulting in
an infinite cascade of differential equations. Its trurarathecessitates an approx-
imation of higher order moments in terms of lower order motsethe so-called
moment closure approximation.

Below, we will derive an emergent-level description of tlaptive SIS model
using moment closure approximation. In the SIS model, thenerus of zeroth order
are the densities of infected and susceptiblésand [§. First order moments are
the per-capita densities of SS-, SI- and II-linf&5), [SI] and]l1], and second order
moments the densities of triplefdBC] with a given sequence of statésB,C ¢
{1, S}. Due to the conservation relatiofst- | = 1 and[S§ + [9] + [I1] = (k) the
dynamics of the zeroth and first order moments are entirgdyucad by the balance
equations fofl], [S§, and[l1]. A further advantage of the normalization relations is
that we can write all subsequent equations as if we wererdgalith a number of
individual nodes and links instead of densities.

Let us start by writing a balance equation for the densityfdéted nodes. Infec-
tion events occur at the rafESl| increasing the number of infected nodes by one;
Recovery events occur at a rafg and reduce the number of infected nodes by one.
This leads to q

=01 = pISI) —rl] 1)

The equation contains the (presently unknown) variélifeand therefore does not
yet constitute a closed model. One way to close the model wenean field ap-
proximation, in which the density of SI-Links is approxiradtby [Sl] ~ (k)[S]].
However, in the present case this procedure is not feas¥geiring does not alter
the number of infected and hence does not show up in Eg. (1is Tte mean-field
approximation is not able to capture the effect of rewirilmgtead, we will treat
[9], [SS], and[l1] as dynamical variables and capture their dynamics by aahditi
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balance equations. This approach is often called momeiatnesign as the link den-
sities can be thought of as the first moments of the network.

As stated above, it suffices to derive balance equationkéaténsities of SS- and
lI-links. The density of SI-links can then be obtained frdra tonservation relation.
First the Il-links: A recovery event can destroys ll-linkgtie recovering node was
part of such links. The expected number of Il-links in whichieen infected node
is involved is 211]/[1]. (Here, the two appears since a single II-link connects to tw
infected nodes.) Taking the rate of recovery events int@aat the total rate at
which ll-links are destroyed is simplyr 21].

To derive the rate at which II-links are created is only dligimore involved.

In an infection event the infection spreads across a linkyeding the respective
link into an II-link. Therefore every infection event wilkeate at least one II-link.
However, additional ll-links may be created if the newlydafed node has other
infected neighbors in addition to the infecting node. Iisttése the newly infected
node was previously the susceptible node in one or morei@éts. Thus, we can
write the number of II-links that are created in an infectevent as & [19]/[S].
In this expression the ‘1’ represents the link over whichittfection spreads while
the second term counts the number of ISI-triplets that ruoudh this link. Given
this relation we can write the total rate at which ll-linkeareated ap[S](1+
(1S]/[8]) = p([S]+[1S1]).

Now the SS-links: Following a similar reasoning as above we finat infection
destroys SS-links at the rafgSSl]. Likewise SS-links are created by recovery at
the rater[9]. In addition SS-links can also be created by rewiring ofiSid. Since
rewiring events occur at a ratgSl| and every rewiring event gives rise to exactly
one SS-link the total rate at which rewiring creates SSsliislsimplyw|[Sl].

Summing all the terms, the dynamics of the first moments catelseribed by
the balance equations

S1ss = (r+w(s] - piss) @
) = (s + 18 2] @

Again, these equations do not yet constitute a closed mbdetepend on the un-
known second momen{SSl] and|[l Sl]. However, the first order-moment expansion
captures the effect of rewiring. While we will return to thguation above later,
a feasible way of closing the system is to approximate thersenoments by a
mean-field-like approximation: thaair approximation.

Let us start by approximatinySl]. One half of the ISI-triplet is actually an SI-
link, which we know occurs at the densit§l]. In order to approximate the number
ISI-triplets running through a given link we have to caldalthe expectation value
of the number ofadditional infected nodes that are connected to the susceptible
node. For this purpose let us assume that the susceptibéeaidde given Sl-link
has an expected number(@f links in addition to the one that is already occupied in
the Sl-link. Every one of these links is an SlI-link with praiday [Sl]/((k)S). (Here,
we have neglected the fact that we have already used up ohe aital number of
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Sl-links. This assumption is good if the number of Sl-linksréasonably large.)
Taking the density of Sl-links and the probability that theynnect to additional
Sl-link into account we obtain

8P
['Sl]—Kﬁ (4)

wherek = (q)/(k) remains to be determined. The quantity that appears ir is
the so-callednean excess degree. Precisely speaking it denotes the expected number
of additional links that are found by following a random link

Subsequently we will assume that= 1. This assumption will be substantiated
in the reasoning of Sec. 3.3. Here, we only state that it allogito approximate the
density of triplets byl SI] = [SI]2/S, and following a similar argumentatid8Sl | =
2[SS[9]/[S]. Substituting these relations into the balance equatiom®btain a
closed system of differential equations

411 = pis) ) Q
4155 = rrwis] - 2092 ©
dgt[”]: p[s](l-i-%)—Zr[ll]. (7)

The system of differential equations can now be studied Wiéhtools of dy-
namical systems theory. Gross et al. compare the analy8salts thus obtained
with detailed-level simulations of the full model and findtlvan very good agree-
ment [11]. This indicates a high accuracy of the emergeretigdescription (5-7).

Regarding the comparison of the emergent-level ODE ddgmmipnd the detailed-
level simulations two facets are worth noticing: Firsthe tequilibrium solutions of
the ODE system correspond in general to highly dynamic statethe detailed
level, in which individual nodes undergo infection and ney and links are con-
tinuously rewired. Secondly, qualitative transitions e dynamics, which appear
as bifurcations in the context of the ODE system, corresgonghase transitions
in the context of the individual-based simulations. Belowg, use the terminology
of bifurcations to briefly summarize the dynamical repedaf the adaptive SIS
model.

In contrast to the models of opinion formation, which haverbéiscussed in
Sec. 2, the adaptive SIS model features three instead of teeepses. As a con-
sequence, co-dimension one bifurcations may occur andftirerdynamics can be
expected to be more complex than in the models discusseaabgure 5 shows
the two parameter bifurcation diagram which results fromdhalysis of Egs. (5—
7). In the white and light gray regions there is only a singteaator, which is a
healthy state in the white region and an endemic state inghedray region. In the
medium gray region both of these states are stable. Anothates region of bista-
bility is shown in dark gray. Here, a stable healthy statexste with a stable epi-
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demic cycle. The transition lines between these regiongspond to saddle-node
(dashed), Hopf (continuous), and cycle fold (dotted) w&iions. The dash-dotted
line marks a trans-critical bifurcation that corresponalghte threshold at which
epidemics can invade the disease free system. Increasgthgeincreases the epi-
demic threshold significantly. This contrasts to modelspihmn formation where
increased rewiring decreases the probability of completsensus. The reason for
this difference between models of opinion formation and ete@f epidemics is
that a dissenting node does not change its opinion if isthatg@le an infected node
eventually recovers.

Fig. 5 Two parameter bifur- 0.6 . . — .

cation diagram showing the - Os<;’|llatory

dependence on the rewiring 0.5- ;

ratew and the infection prob- /

ability p at fixed recovery rate 0‘4_' Hea|th’y

r = 0.002. Figure extracted WO 3L / a\o\e )

from [11]. ) 6\6\'
0.2+ -
0.1- ~’_,-—'—'— -

AN Endemic
0.002 0.004 0.006 0.008
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At high rewiring rates, the adaptive SIS model can approacdbsaillatory state
in which the prevalence of the epidemic changes periogicalie oscillations are
driven by the two antagonistic effect of the state-specéigiring rule. On the one
hand, rewiring isolates the infected and thereby reducepitbvalence of the dis-
ease. On the other hand, rewiring leads to an accumulatitinksf between sus-
ceptibles and thereby forms a tightly connected clustefirét the isolating effect
dominates and the density of infected decreases. Howessdrealuster of suscep-
tibles becomes larger and stronger connected a threshaldssed at which the
epidemic can spread through the cluster. This leads to aps®lof the susceptible
cluster and an increased prevalence which completes the. Gytee parameter re-
gion in which the oscillations occur is enlarged if one tak#e account that the
rewiring rate can depend on the awareness of the populatidrireerefore on the
prevalence of the epidemic [10].

3.2 Other approaches

Exploring the adaptive SIS model, Gross et al. were able ¢avghat even in an
optimistic scenario, where only susceptible individualsire and reconnection al-
ways occurs toward an susceptible individual, rewiringgdioet automatically lead
to the extinction of the disease but allows for rich dynamiesiants of the topolog-
ical evolution rule, in which not only susceptible but alafeicted individuals may
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rewire their links, have been explored by Zanette and RGasman [20, 25]. In
these contributions, the authors prove that rewiring resiadvantageous for sup-
pressing the disease even if the isolation of infected agsnmodeled to be less
effective than in [11].

Other extensions of the above-discussed model concermdigtiaal treatment
and the state inventory. An alternative to the tool of moneéggures approximation
is proposed by Gross and Kevrekidis [10]: Automated moméoguce dispenses
with analytical approximations of higher order moments arslead numerically
computes the closure terms on demand. Additional statenateded in the fol-
lowing models: The SIRS model, extends the scenario of iateand susceptible
individuals by individuals that have recovered from theedise and are temporary
resistant (R) against reinfection. The adaptive SIRS miogebeen studied by Shaw
and Schwartz [21] and is discussed in Chapter ?. In [20],lRGasman and Zanette
extend the SIS scenario by an additional state that modelstéige of the disease in
which individuals are infected but yet free of symptoms. B®ih these state appear
to be susceptible, but have already been in contact withrifeetious agent, and
will eventually progress to the infected phase.

3.3 Moment closures on adaptive network

The derivation of the Egs. (5—7) has involved approximat@atnvarious stages. Nev-
ertheless the predicted bifurcation diagrams are in veog@greement with the nu-
merical results. This make us to address the particularrddgas which adaptivity
add to the tool of moment closure approximations.

Let us first address the topological implications of the usggroximation
K = {(q)/(k) = 1. The mean excess degrép of a network is governed by two
opposing effects [17]: One the one hand we are only countiagtditional links,
so that for a node of given degr&ehe excess degree is= k— 1. On the other
hand, we have reached the node by following a link and thezdiave a higher
probability to arrive at a node of high degree. Depending f@ rietwork topol-
ogy the(q) can therefore be larger or smaller thda. It is a special property of
Erdos-Renyi random graphs that both effects cancel, go(tha= (k) andk = 1.
Smaller values ok are found in homogeneous networks such as regular lattices
while networks with a wider degree distribution generatiyrespond to larger (and
in scale-free networks even diverging) valuexofThus,k = 1 could be called a
random-graph-like approximation. Note that simulatiohthe adaptive SIS model
reveal the emergence of state-specific degree distrilsjtighich are considerably
broadened compared to the initial Poissonian degreelalision [11]. However, the
results presented here show that the approximatienl yields good results even
for networks with a relatively wide degree distribution.

The pair approximatiopABC] O [AB][BC]/[B], which is applied above, bases on
the assumption that the states A and C of next nearest nefghb® independent.
In particular, the three nodes of type A, B and C are assumetbriorm a triangle.
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For the case of static networks, many efforts have been noagésiase this assump-
tion and thus enlarge the scope of the approximation. Amangrs, Keeling et al.
propose to account for the presence of triangles by meanslogtering parameter
¢ [13]. The moment closure, which results from Ref. [13], ialerated in Ref. [18]
by comparison with agent-based simulations. Thereby,dPartt al. show that the
moment closure yields a good approximation for dynamicsasmdom networks,
but is limited in case of networks whose geometrical stmectannot sufficiently be
described by the clustering paramegerTo overcome this problem, Peyrard et al.
include long-range correlations to the moment closure@ppration and therewith
adapt it to networks with more complex geometric featurehsas longer loops
[19]. However, in the context of adaptivity, geometric fa&is of the initial network
as well as long range correlations of states are suppressbe aetwork continu-
ally mixes itself. One could say that, over time, the adagtigtwork is an ensemble
of itself. This may explain why the pair approximation, wiis known to be ap-
propriate in the case of static random networks only, perfowell if applied to the
adaptive SIS model.

4 Summary and Outlook

In this chapter, we have reviewed a selection of recent gagmercerned with opin-
ion formation and epidemic spreading on adaptive networks.

Comparing the reviewed approaches, we have focused on riage aspects
in which models differ: First the number of single-node esaad model captures,
second the topological evolution rules and third the way hiclv the symmetry
of interactions is broken. In models of opinion formatioiffetences in the most
subtle aspect, namely the direct or reverse implementafidhne opinion update,
have crucial impact on the system’s behavior, whereasrdiifees in the two other
aspects do not lead to qualitative changes. In models oeapaspreading, the
asymmetry of interaction is inherent in the modeled sitwraind can therefore not
be modified. The particular choice of the topological eviolutules influences the
system’s behavior only in minor respects. Changes in theébeuof possible single-
node states, however, essentially changes the systenevibelas the number of
states is closely related to the number of state-specificgsses.

In all reviewed models, adaptive dynamics lead to the foionaif state-homo-
geneous subpopulations, providing an example for the appea of global struc-
ture from local rules. The subpopulations exhibit différéegree distributions if the
rewiring rule is sensitive to differences between statéss might explicitly be the
case like in the epidemic SIS model or be due to subtle asymile in the rVM
and dVM.

The coupling of state-specific degree distributions andrasgtric exertion of
influence can cause that a system is stabilized in a dynasmealibrium in which
two single-node states are in average equally represdntiek dVM, any disparity
in the distribution of the competing opinions is is immediatdamped. In models
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of epidemics, the restoring force acts with a time delayithmiduced to the system
by the local process of recovery. This interaction can leaastillations.

Moment closure approximations allow the analytical treaitnof contact pro-
cesses on adaptive networks. In the context of adaptivitly, tlee performance and
the simplicity of this tool, are improved which makes thedstigation of further
generalizations a promising topic. Increasing the numbsingle-node states in a
model increases the numberrih order moments for ah; Including higher order
processes increases the oraem which the system can reasonably be closed. That
is, the more complex the system under consideration, the differential equations
we will have to formulate and to analyze. The latter task sefaasible as bifurca-
tion programs are able to treat in the order of DDEs simultaneously. Maybe the
former task, too, can in future efficiently be solved by a ntio# routine, which
translates a set of abstract processes in a set of diffateqtations.

References

1. Albert, R., Barabasi, A.: Statistical mechanics of ctermetworks. Rev. Mod. Phy34(1),
1-54 (2002)

2. Benczik, 1.J., Benczik S.Z., Schmittmann, B., Zia, R.KLRck of consensus in social sys-
tems. Euro. Phys. Let82 480061-5 (2008)

3. Durrett, R., Levin, S.A.: Stochastic Spatial Models: AeUs Guide to Ecological Applica-
tions. Philos. T. R. Soc. B43, 329-350 (1994)

4. Ehrhardt, G.C.M.A., Marsili, M., Vega-Redondo, F.: Pberenological Models of Socio-
Economic Network Dynamics. Phys. Rev7g& 0361061-11 (2006)

5. Gargiulo, F., Mazzoni, A.: Can extremism guarantee fikme arXiv:0803.3879 (2008)

6. Gil, S., Zanette, D.H.: Coevolution of agents and netwofBpinion spreading and commu-
nity disconnection. Phys. Lett. 356, 89-95 (2006)

7. Grabowsi, A., Kosinski, R.A.: Evolution of a social nek: The role of cultural diversity.
Phys. Rev. E/3, 0161351-7 (2006)

8. Gross, T.: The interplay of network state and topologypidemic dynamics. In: Boccaletti,
S., Latora, V., Moreno, Y. (Eds.) Handbook of Biological Wetks. World Scientific, Singa-
pore, to appear in 2009

9. Gross, T., Blasius, B.: Adaptive Coevolutionary NetvgorkA Review. JRS Interfacéb),
259-271 (2008)

10. Gross, T., Kevrekidis, |.G.: Coarse-graining adaptiwevolutionary network dynamics via
automated moment closure. Europhys. L&2.380041—6 (2008)

11. Gross, T., Dommar D’Lima, C., Blasius B.: Epidemic dymzsmwn an adaptive network. Phys.
Rev. Lett.96, 208701—4 (2006)

12. Holme, P., Newman, M.E.J.: Nonequilibrium phase tit#rsin the coevolution of networks
and opinions. Phys. Rev. B, 0561081-5 (2007)

13. Keeling, M.J., Rand, D.A., Morris, A.: Dyad Models for igthood Epidemics. Proc. R. Soc.
B 264, 1149-1156 (1997)

14. Kozma, B., Barrat, A.: Consensus formation on adap&reorks. Phys. Rev. 7,0161021—
10 (2008)

15. Kozma, B., Barrat, A.: Consensus formation on coevaglviatworks: groups’ formation and
structure. J. Phys. Al, 2240201-8 (2008)

16. Nardini, C., Kozma, B., Barrat, A.: Who's talking first®®&sensus or lack thereof in coevolv-
ing opinion formation models. Phys. Rev. Let®0, 15870114 (2008)



20

17.

18.

19.

20.

21.

22.

23.

24.

25.

Anne-Ly Do and Thilo Gross

Newman, M.E.J.: The structure and function of complexvoeks. SIAM Rev.45(2), 167—
256 (2003)

Parham, P.E., Singh, B.K., Ferguson, N.M.: Analytigapraximation of spatial epidemic
models of foot and mouth disease. Theor. Popul. B3y 349-368 (2008)

Peyrard, N., Dieckmann, U., Franc, A.: Long-range dato@s improve understanding of the
influence of network structure on contact dynamics. ThegpuP Bio. 73, 383—-394 (2008)
Risau-Gusman , S., Zanette, D.H.: Contact switching eantrol strategy for epidemic out-
breaks. arXiv:0806.1872 (2008)

Shaw, L.B., Schwartz, I.B.: Fluctuating epidemics oapitve networks. Phys. Rev. &,
0661011-10 (2008)

Vazquez, F., Eguiluz, V.M., San Miguel, M.: Generic Atisng Transition in Coevolution
Dynamics. Phys. Rev. Lett00, 10870214 (2008)

Zanette, D.H.: Coevolution of agents and networks in g@idesniological model.
arXiv:0707.1249 (2007)

Zanette, D.H., Gil, S.: Opinion spreading and agentegggion on evolving networks. Phys-
ica D 224, 156-165 (2006)

Zanette, D.H., Risau-Gusman , S.: Infection SpreadireyPopulation with Evolving Con-
tacts. J. Biol. Phys. (2008) doi: 10.1007/s1086700890609



