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Abstract Contact processes describe the transmission of distinct properties of nodes
via the links of a network. They provide a simple framework for many phenomena,
such as epidemic spreading and opinion formation. Combining contact processes
with rules for topological evolution yields an adaptive network in which the states
of the nodes can interact dynamically with the topological degrees of freedom. By
moment-closure approximation it is possible to derive low-dimensional systems of
ordinary differential equations that describe the dynamics of the adaptive network
on a coarse-grained level. In this chapter we discuss the approximation technique
itself as well as its applications to adaptive networks. Thus, it can serve both as a
tutorial as well as a review of recent results.

1 Introduction

Contact processes are based on an elementary observation: Individuals are altered
and shaped through interaction with others. Equally basic is the observation that in-
dividuals can often decide with whom to interact. Both of these observations can be
modeled by a single network, in which nodes correspond to individuals while links
correspond to interpersonal connections. The dynamics of this network is governed
by two processes: Topology-dependent transmission of dynamical states of individ-
uals, and state-selective evolution of the links. Hence, the combination of the two
gives rise to an adaptive network [9].

Anne-Ly Do
Max-Planck-Institute for the Physics of Complex Systems, Nöthnitzer Str. 38, 01187 Dresden,
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Within the framework of contact processes on adaptive networks, attention has
focused particularly on opinion formation [4, 6, 7, 24, 2, 12, 14, 15, 16] and epi-
demic spreading [11, 23, 10, 20, 21, 25, 8].

Comparing the models studied in the context of the differentapplications reveals
many similarities and some distinct differences. Similarities are found mainly in the
general set-up of the models. First, the transmission of states is strictly limited to the
neighborhood of a node. Second, to account for differences among individuals and
to facilitate computation, the processes in the model are ingeneral defined stochas-
tically. Third, concerning the topological evolution, thevast majority of models al-
lows only for rewiring of links. In contrast to other processes, rewiring conserves
the number of nodes and links, which is advantageous for numerical simulation. Fi-
nally, all numerical models discussed in this chapter applyan asynchronous update
procedure, in which a randomly selected node is updated in any one step. This is
believed to yield the best approximation to a continuous time system [3].

The differences between models of epidemics and models of opinion formation
arise mainly from differences in the physics of the underlying real-world processes:
In epidemics, it exists an objective difference between infected and healthy individ-
uals, and the processes are inherently state-specific. The infection can be transmitted
along the links, while it is obvious that the same is not possible for the healthy state.
By contrast, in models of opinion formation the different opinions are in general
treated equally and therefore appear symmetrically in the model. One important con-
sequence of the state-dependence of epidemic processes is that additional processes
have to be introduced in the model if the number of states is increased. Indeed, many
models of epidemics extent the scenario of healthy and infected individuals by ad-
ditional states to model distinct temporal phases of the infection. However, if for
instance a state is introduced, which corresponds to individuals that have recovered
from the disease, new processes have to be formulated that govern transitions to and
from this state. Conversely, the symmetry of state-dependence in opinion-formation
processes enables us to increase the number of states without increasing the number
of processes in the system. On the one hand this means that a system with a small
number of opinions greater than two will behave very similarly to a system with
just two opinions [16]. On the other hand it allows to consider systems in which
infinitely many opinions compete based on a finite number of processes.

Regardless of the model, the investigation of contact processes on adaptive net-
works poses characteristic difficulties. Full agent-basedsimulations are fundamen-
tally inefficient. In order to determine the long-term behavior of the system we have
to simulate for a long time. During this time the simulation produces information,
namely a dynamical trajectory, which comes at a computational cost although it is
generally not used in the analysis of the system. By contrast, the theory of dynam-
ical systems offers many tools, such as Newton’s Method and bifurcation analysis,
that enable us to determine the long-term behavior of the system directly. In or-
der to apply these methods the adaptive network needs to be described in terms of
emergent variables, governed by differential equations ordiscrete time maps. For
contact processes, convenient variables are the densitiesof certain subgraphs called
network moments. Amoment expansion of the dynamics results in an infinite cas-
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cade of differential equations. This cascade can be truncated by amoment-closure
approximation which is explained below. In practice, it is often sufficientto approx-
imate the network by a small number of differential equations (e. g. 3), which allows
for analytical treatment of the system.

In this chapter, we aim to provide an overview of recent studies concerned with
contact processes on adaptive networks. Throughout these studies certain system
level phenomena, like the emergence of state homogeneous subpopulations, are
found to recur. The underlying mechanisms of these phenomena are addressed and
compared. In Sec. 2 various papers are reviewed which treat opinion formation by
means of different models. A comparison of these models provides insights into the
topic per se and, moreover, into the relation between the microscopic rules and the
system level behavior. Sec. 3 focuses on models of epidemic spreading. The applica-
tion of an moment closure approximation is demonstrated by means of the adaptive
SIS-model. Thereafter we launch into a more general discussion of moment clo-
sures. In particular we emphasize that the adaptivity of thenetwork improves the
efficiency of this tool.

2 Opinion formation - theme and variations

Models of opinion formation explore the spreading of opinions in social networks.
Current models assume that this spreading is governed by twocompeting processes:
social adjustment and social segregation. The former meansthat connected individ-
uals adjust their views, the latter that individuals maintain contacts preferentially
to like-minded individuals. In general, both processes reduce the number of links
between nodes with conflicting opinions and lead to the formation of homogeneous
social communities holding a uniform opinion. A network which is entirely com-
posed of suchconsensus communities is said to be in theconsensus state. While
almost all models ultimately reach a consensus state, the convergence timeτc and
the distribution of community sizesPs can differ markedly depending on the relative
rate of the competing processes.

As interpersonal interactions are highly complex and difficult to capture in mod-
els, a variety of different modeling approaches have been proposed. This diversity
provides the opportunity to investigate which details of the microscopic description
affect the system level properties. Below, models of opinion formation are compared
that differ mainly in the three aspects subsequently described.

The first aspect concerns the number of opinions in the model.As we have men-
tioned above, essentially two cases have to be distinguished: Models in which only
two alternative opinions exist, and those in which individuals can choose from a
continuous spectrum of opinions. The first, so-calledvoter-like approach models
typical electoral decisions, where the number of choices islimited by the number of
candidates. The second approach applies to opinions such asreligious belief, where
in principle an infinite number of choices exists.
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The second aspect in which models differ is the treatment of social segregation.
A link that connects individuals with conflicting opinions can either be rewired or
broken entirely. In the first case the number of links is conserved, and therefore the
process is reversible. In the second case the number of linksis decreased, therefore
the process is irreversible unless it is counteracted by another process in which new
links are created. So far, the creation of links has hardly been considered in models
of opinion formation as it causes numerical difficulties andintroduces additional
complexities.

Another difference between the models is how the symmetry ofsocial interac-
tions is broken. In almost all models of opinion formation adjustment of views is
conceived as an asymmetric act. However, in the absence of a parameter that mea-
sures the persuasive power or the social influence of an individual, the implementa-
tion of asymmetry between interacting nodes is arbitrary: If we first randomly chose
a nodei and subsequently randomly chose one of its neighborsj, theni might either
adopt the opinion ofj or vice versa. The first option defines a so-calledreverse, the
second a so-calleddirect update rule. It is known that both rules result in qualita-
tively different behavior [16].

In the following we discuss four major contributions to the subject of opinion
formation on adaptive networks. Section 2.1 focuses on a model by Holme and
Newman, which features a continuous spectrum of opinions [12]. Social segrega-
tion is modeled through rewiring and social adjustment through an reverse opinion
update. The model which will be discussed in Sec. 2.2 can be considered as oppo-
site approach: In Ref. [6] Gil and Zanette investigate a voter-like model, in which
social segregation is modeled through deletion of links. The model by Kozma and
Barrat [14], which is discussed in Sec. 2.3, again considersthe choice between in-
finitely many opinions. The main difference to Ref. [12] is that social segregation
and social adjustment are restricted by an additional parameter, which can be inter-
preted as bounded tolerance. In Sec. 2.4 a paper of Nardini et. al. is addressed that
compares two voter-like models, both of which use identicalrewiring rules but dif-
fer with respect to the direct/reverse implementation of the asymmetric adjustment
process [16].

2.1 Continuous opinions

Holme and Newman were the first to report that the diversity ofopinions sustained
in a society undergoes a phase transition if the relative rate of social adjustment and
social segregation crosses a critical threshold [12]. In their paper, they consider the
case of opinions which are in principle unlimited in number.A noden is initially
assigned an opiniongn at random. In each timestep, a nodei is randomly chosen
and updated in one of two ways: With probability 1− φ , i is convinced by one of
his neighborsj andgi is set to equalg j. With probabilityφ , nodei randomly selects
one of its links and reconnects it to a node with opiniongi.
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Note that this parameterization in terms ofφ is advantageous as only the relative
rate of the two processes is important. Rescaling the sum of the rates of the two
processes to one normalizes the frequency of events to one per update and thus
effects an optimization of simulation time.

In simulations, the system ultimately approaches a consensus state, in which all
individuals in the same connected component hold the same opinion. As mentioned
above, there is no objective difference between different opinions. Thus, analyzing
the consensus state it is not of interest which particular opinions it features, but only
how many of them survived and how the followers are distributed. This information
is captured by the component-size distributionPs.

Figure 1 summarizes the dependence ofPs on φ . Forφ = 0, no connections are
rewired, so the component-size distribution of the initialrandom graph is conserved.
In a random graph with mean degree〈k〉> 1 there is one giant component of the size
O(N) andO(N) small components ofO(1) (see Fig. 1 a). We therefore find a large
majority holding one opinion and many small groups holding different opinions. For
φ = 1, opinions never change, so the final cluster-size distribution equals the initial
distribution of opinions. In particular the giant component splits into fragments of
finite size (see Fig. 1(c)).

Fig. 1 Distribution of com-
munity sizes in the consensus
state forφ below (a), at
(b) and above the critical
point (c). Numerical data are
averaged over 104 realiza-
tions for each value ofφ .
N = 3200,k̄ = 4. Figure ex-
tracted from [12]
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Applying a finite-size scaling analysis, Holme and Newman are able to show that
a critical parameter valueφc ≈ 0.458 exists, at which a continuous phase transition
takes place. At this transition the distribution of followers Ps approaches a power-
law (Fig. 1(b)).

The convergence timeτc needed to reach the consensus state is shown to scale
differently in the regimes to both sides of the phase transition. Forφ = 1 τc scales
asN and forφ = 0 as log(N). For φ ≈ φc, τc obeys a scaling relation of the form
N−γ with the critical exponentγ = 0.61±0.15 based on numerical simulations.
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2.2 Two-valued choice and irreversible discord

The scenario that Gil and Zanette discuss in Ref. [6, 24] deviates in two respects
from the one investigated above. Firstly, the regarded model is voter-like which
means that choices are two-valued. Secondly, disagreeing neighbors break con-
tact irrevocably. Starting from a fully connected network with randomly distributed
opinions, conflicts are settled by convincing neighbors or cutting links. As above,
rates of both processes are subsumed under one parameterq, which is defined as the
probability of opinion transmission.

The dependence of the community-size distribution onq described by Gil and
Zanette matches the results of Holme and Newman. Differences in the set-up are
solely mirrored by “boundary effects”: In the absence of topological evolution the
number of opinions in the final state equals the number of initially disconnected
communities, which is one in the case under consideration and greater than one in
[12]. In the opposite limit, i. e. without contact interactions, the number of discon-
nected communities in the final state equals the number of initial opinions, which is
two in the model of Gil and Zanette and greater than two in thatof Holme and New-
man. For intermediate values ofq (φ respectively), the mean of the distributionPs

shifts in both models from smaller to largers as contact interactions gain influence.
Let us now discuss the underlying mechanisms that lead to theformation of sim-

ilar community-size distributions in the two different models. In both models, the
processes of social adjustment and social segregation occur only on links between
disagreeing neighbors, which we therefore callactive links. The consensus state
is reached when all of these active links have vanished. Although segregation is
modeled by rewiring in [12] and by cutting links in [6] the effect is in both cases
a reduction of active links. Social adjustment results in both models either in an
activation or a deactivation of links. Note however, that invoter-like models adjust-
ment reverses the state of all links connecting to the targetnode. By contrast, in
models with continuous opinions, active links connecting to the target node may
remain active. Nevertheless, we know that both models eventually reach consensus
even without segregation, therefore social adjustment hasto decrease the number of
active linksin average.

While the effect of both, adjustment and segregation, is in the long run a reduc-
tion of active links, both processes have a different impacton the consensus time
τc. As we have seen above, consensus through social adjustmentrequires a conver-
gence time which scales likeN. Social segregation significantly accelerates consen-
sus but separates neighbors, whose opinions could in the long term have converged
through social adjustment. Thus, increased segregation leads to increased fragmen-
tation, which explains the segregation-rate dependent changes of the distributionPs

as well as their independence of the differences between [12] and [6].
The link-deletion process in the model of Gil and Zanette reveals a phenomenon,

which is not obvious in the model of Holme and Newman. Even though the number
τc(q) of events necessary to reach consensus decreases with decreasingq, the num-
ber of segregation events(1−q)τc(q) depends non-monotonically onq. As shown
in Fig. 2, a critical parameter valueqmin exists, at which the fractionr of remain-
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ing links in the consensus state is minimized, i. e. at which amaximum number of
deletion events occur. This can be understood intuitively:The fraction of remaining
links r is minimized if between two subsequent opinion flips the majority of active
links is deleted but no consensus communities are isolated.In such a situation an
opinion flip almost exclusively activates links, the majority of which will in turn
be deleted. If less than the critical number 1− qmin of active links are deleted, the
opinion flip not only activates but also inactivates links. These inactive links, un-
less reactivated later, are not available for deletion, andthusr increases. If on the
other hand more than 1−qmin active links are deleted, the probability increases that
consensus communities are isolated. Internal links of suchcommunities can not be
activated in subsequent adjustment events, increasingr.

Fig. 2 Fractionr of remain-
ing links as a function of the
parameterq. Different sym-
bols correspond to different
system sizes,N = 20 (×),
50 (◦), 100(−) and 500(•).
The dashed line represents the
analytical approximation for
largeN. Insert (a): detailed
view of the same data for
small q. Insert (b): Position
qmin (◦) and depthrmin (•) of
the minimum ofr as a func-
tion of N. Figure extracted
from [6]
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Based on the similarity of the two compared models, it is arguable whether the
critical parameterφc in [12] corresponds to the same phase transition asqmin in
[6]. Encouraging in this regard are recent findings of Vazquez et al. that indicate
the existence of a generic fragmentation transition for different voter-like models
[22]. One may argue that the critical parameterφc is independent of the system size
while qmin decreases with growingN (cf. Fig. 2(b)). However, theN-dependence
of qmin is only a result of the initial conditions chosen in [6]: As the initial graph
is fully connected, an opinion-flip event affectsO(N) links, whereas a link-deletion
event affects one link regardless of the system size. The relative rate of adjustment
and segregation events, which minimizes the fraction of remaining links, therefore
approaches zero ifN goes to infinity.

2.3 The influence of bounded tolerance

The influence of tolerance on opinion formation is investigated in [14, 15]. In these
papers, Kozma and Barrat consider a scenario where opinionscan take continuous
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values. A global parameterd is introduced describing the tolerance range of individ-
uals. If opinions of neighbors are closer than the tolerancerange, i. e. if

∣

∣gi −g j
∣

∣< d,
both adopt the mean opinion with probability 1−w. If opinions of neighbors differ
more than the tolerance range,i rewires with probabilityw to a randomly chosen
nodek.

If defined in this way, bounded tolerance has two different effects: On the one
hand it reduces the selectivity of social segregation. On the other hand it enhances
selectivity of social adjustment. To illustrate these points let us first consider the
effect of bounded tolerance in the absence of segregation. In this case a consensus
opinion in a component is only reached if tolerance intervals of neighbors overlap.
Otherwise “tolerance patches” may form in which nodes are locally in consensus
but do not communicate with nodes outside the patch. In thesetolerance patches
conflicting opinions can survive indefinitely and thus the equivalence of topological
components and consensus communities in the final state is broken. However, to
describe the final state we stick with the terminology, whichwas introduced above,
and only adapt the meaning of the term “consensus community”slightly: Used in the
present context, it refers to communities of like-minded individuals which are nec-
essarily connected among themselves but not necessarily isolated from individuals
of other communities. Kozma and Barrat show that, in the absence of segregation,
three parameter regimes can be identified (cf. Fig. 3): For large toleranced, the set-
up matches theφ = 0 case in Ref. [12]. Consequentially, the system reaches a state
where nearly all nodes are belong to a single community of like-minded individu-
als. Only whend falls below a critical valuedc ≈ 0.256, the enhanced selectivity
of social adjustment is noticeable. Then, the final state becomes polarized, i. e. two
macroscopic communities are observed to coexist with a number of finite size com-
munities. Finally, for very smalld, an extensive number of small communities form
an fragmented final state.

Fig. 3 Size of the largest
(open symbols) and second
largest (filled symbols) ho-
mogeneous opinion cluster
as a function of the toler-
anced. The color coding for
the system size is the same
for the largest and second
largest cluster. Inset: Size of
the largest opinion cluster
as a function ofd for differ-
ent rewiring ratesw. Figure
extracted from [14].
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The onset of rewiring is found to have different effects in the different parameter
regimes. On the one hand, it impedes complete consensus: thelarger the rewiring
rate, the larger tolerance values are necessary to reach complete consensus (cf. inset
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Fig. 3). On the other hand, in the fragmented regime, it leadsto an enlargement of
the consensus-community sizes. This can be explained as follows: For large toler-
ance, neighbors with overlapping tolerance intervals prevail. Opinions of neighbors
that differ more thand are altered through interaction with other neighboring nodes
and eventually become closer thand. Hence, the key to the formation of extended
communities lies in the possibility of repeated contact interactions. As in the pre-
viously studied models, rewiring disconnects communitiesprematurely and thereby
impedes complete consensus. For small tolerance, the limiting factor for the size of
consensus communities is the small number of neighbors withoverlapping toler-
ance intervals. In this situation, rewiring allows each node to find those nodes it can
communicate with and thus facilitates the merging of small groups.

Indeed, the two different effects of rewiring can also be seen in the model of
Holme and Newman. The initial giant component is split due torewiring. The initial
components of finite size, which corresponds to the limit of small tolerance, gain
size (cf. Fig. 1).

2.4 Asymmetric insertion of influence

All models presented so far feature asymmetric interactions between a randomly
chosen node and a random neighbor. In contrast to a randomly chosen node a ran-
dom neighbor is not drawn in an unbiased way – it is reached by following a link
and therefore nodes with higher degree are preferentially selected as random neigh-
bors. The symmetry of node and neighbor in the rules of the model is in some cases
broken by definition of the contact process [6, 12], and in others by the definition
of the rewiring mechanism [12, 14]. The effect of the asymmetry of the interactions
is studied by Nardini et al. [16] via a mean field analysis. Nardini et al. show that,
in case of inhomogeneous networks, the implementation of the asymmetry may de-
cisively influence the behavior of the system. They compare two voter-like models
that differ with respect to the asymmetry of the opinion updates. In both models each
timestep begins with choosing an individuali and one of its neighborsj at random.
If i disagrees withj, it cuts the link and establishes a new link to a randomly chosen
nodek with probabilityφ . With probability 1−φ , one of the two convinces the other
of its opinion. The difference in the models lies in the node that is convinced. The
first alternative is a reverse voter-like model (rVM), in which i is convinced byj.
The second alternative is the direct voter-like model (dVM), in which j is convinced
by i.

Simulations show that in both models nodes of the majority opinion have a higher
average degree than nodes of the minority opinion. Nodes with high degree, how-
ever, are preferentially selected as random neighborsj [1, 17], and hence, the ran-
dom neighborj is likely to hold the majority opinion. That is, of two dissenting
neighbors - a random nodei and its random neighborj - i probably holds the mi-
nority and j the majority opinion. In the rVM the majority opinion reproduces itself
as j convincesi. Thus, once a disparity between both opinions emerges it increases.
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By contrast, in the dVM the majority opinion is repressed asj is convinced byi.
Any disparity in the opinion distribution will therefore undergo damping.

In summary, adaptivity generates a positive feedback in case of the rVM im-
pelling the system toward an accelerated consensus. In caseof the dVM the gen-
erated feedback is negative resulting in a dynamical state where both opinions are
in average equally represented. For the parameter values chosen in the paper no
consensus is reached in the latter case. Nevertheless, small networks fluctuations
may still take the system eventually to an absorbing state inwhich one opinion van-
ishes. The different routes to consensus are reflected in thespecific convergence
timeτc(N) observed in numerical simulations (see Fig. 4). For the rVM,τc displays
a logarithmic scaling behaviorτc(N) ∝ ln(N) while for the dVM,τc(N) grows ex-
ponentially with the system size.
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Fig. 4 (a) Convergence time for the reverse voter-like model as a function of the system size for
various rewiring rates. Inset: same for the direct voter-like model. (b) Convergence time for the
direct (filled symbols) and reverse naming game. For each parameter set, data are averaged over
100 realizations of the system. Figure extracted from [16].

Remarkably, the qualitative differences between the dVM and the rVM are set-
tled if an additional neutral state is introduced, which is the case in the so-called
naming game. In this scenario, change of opinion is impeded in the sense that indi-
viduals have to pass a transient state before defecting to the opposite view. As long
as an individual is in this state, it is accessible for convincing attempts from rep-
resentatives of both opinions. To model the naming game Nardini et al. choose the
following implementation: The competing opinions are assigned with the values+1
and−1 and the additional neutral state is denoted by 0. Contact interactions between
disagreeing neighbors alter the state of the passive node by±1, whereby the sign
depends on the state of the active node. If the active individual is in the neutral state,
it chooses to represent one of the opinions+1 or−1 at random. In analogy to the
direct and reverse voter-like models, a distinction can be made between the direct
and reverse naming game depending on whether the random nodeor the random
neighbor takes the active part.

On a static network the consensus timeτc in naming games is known to scale like
ln(N). Simulations yield that in the adaptive caseτc(N) remains logarithmic irre-
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spective of the chosen modality of asymmetric opinion update (cf. figure 4(b)). This
deviation from the behavior of voter-like models is elegantly explained by Nardini et
al.: Interactions via links between followers of the competing opinions comply with
the dynamics of the dVM (rVM respectively) and exhibit the characteristic negative
(resp. positive) dynamical feedback. However, interactions with neutral nodes exert
a positive feedback regardless of whether the direct or reverse rule is used. As links
to neutral nodes are far more common than links to nodes of theopposing opinion,
these links dominate the behavior and hence in total a positive feedback is observed.

2.5 Other approaches

A slightly different setup for the contact process is explored by Benczik et al. [2],
Grabowski and Kosiński [7] and Erhardt et al. [4]. Instead of occasional interactions
between two randomly chosen neighbors, they consider situations where a node
is updated by evaluation of all influences from its entire neighborhood. All three
models capture various additional properties. Thus, besides internal state dynamics
Ehrhardt et al. include adjustable link creation and removal processes as well as
sophisticated partner selection mechanisms. Equally elaborated are the topological
evolution rules Grabowski and Kosiński use: the idea of bounded tolerance is com-
bined with a set of parameters that model individually distinct sociability. Further-
more, some links, which represent basic connections like family ties, are excluded
from the topological changes. Finally, Benczik et al. investigate a topological evo-
lution rule in which a continuous parameter captures the individuals’ tendency to
rather avoid or seek contact with dissenting individuals. For more details we refer
to the original publications.

An interesting enhancement of the concept of bounded tolerance is discussed
in [5]. In this paper, Gargiulo and Mazzoni replace the global tolerance parameterd
by state dependent tolerance. The underlying hypothesis isthat in realistic systems
tolerance decreases if opinions get extreme. Regrettably,the approach is so far only
explored in simulations in which tolerance-dependent segregation and tolerance-
dependent adjustment occur in consecutive temporal phasesof the evolution. So, an
exploration in the context of adaptive networks remains to be done.

3 Epidemic spreading - Moment closure

Subsequently, we focus on models of epidemic spreading, thesecond, intensively
studied topic in the class of contact processes. Though both, models of epidemic
spreading and models of opinion formation, base on the concept of locally trans-
mitted properties, epidemiological models are essentially distinguished from those
discussed in Sec. 2. In epidemiological models, different single node states signify
different stages of a disease. However, this interpretation imposes far-reaching re-
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strictions on the processes modeling the transitions between the states. Thus, transi-
tions can only occur between appointed states, which reminds of the naming game
but differs from the scenario reviewed in Sec. 2.1. Moreover, the asymmetry of
the contact process is determined by the qualitative differences of the states: Via
a link between an infected and a healthy individual, only theinfected state can be
spread. This is contrary to models of opinion formation where the asymmetry of the
convincing act was implemented arbitrarily. Lastly, construing states as stages of a
disease directly attaches a meaning to the transitions between states. Hence, for each
state in an epidemiological model we have to formulate specific processes that gov-
ern transitions to and from this state. Note that also the nature of these processes is
determined by the states they connect. In practice, the contact process modeling the
transmission of the disease is often completed by purely local processes describing
for instance the process of recovery, which is independent of a nodes neighborhood.

Due to the restrictions outlined above, the diversity of models in the field of
epidemiology is much smaller than in the field of opinion formation. While models
of opinion formation were shown to vary with respect to the implementation of
asymmetry, the number of states, and the topological evolution rules, models of
epidemic spreading do not exhibit any variations with respect to the implementation
of asymmetry. Variations in the number of single-node states are impeded as the
introduction of new states necessitates the introduction of new processes. Variations
of the topological evolution rules are discussed, however to a minor extend.

The substantial coherence among different epidemiological models allows us to
focus exemplarily on the adaptive SIS-model, which features only two states called
S, for susceptible, and I, for infected. By means of this simple model, we illustrate
the conceptual and methodical framework likewise applyingfor more complicated
scenarios (Sec. 3.1). In particular, we demonstrate the useand handling ofmoment-
closure approximations, a common tool in epidemiology [13, 18, 19]. Section 3.2
launches variations and extensions of the basic SIS model, that aim for more real-
ism [23, 25, 21]. Section 3.3 comprises more general considerations concerning the
mathematical description by moment-closure approximations.

3.1 The adaptive SIS model

The simplest model, in which epidemic dynamics and topological evolution can be
combined is the SIS model. It describes a scenario where eachindividual within a
social network is either susceptible (S) to the disease under consideration or infected
(I). Contacts between individuals are denoted as SS-links,SI-links, and II-links ac-
cording to the states of the individuals they connect. Susceptible individuals can
become infected if they are in contact with an infected individual. The transmission
of the disease along a given SI-link is assumed to occur at a rate p. Once an indi-
vidual has been infected she has a chance to recover, which happens at a rater and
immediately returns the individual to the susceptible state. In the adaptive SIS model
proposed by Gross et al. [11] another process completes the circle of infection and
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recovery: If a susceptible individual is connected to an infected individual she may
want to break the link and instead establish a new link to another susceptible. On a
given SI-link this rewiring occurs at a rate ratew.

Note that the rewiring process has been introduced ‘optimistically’: Only sus-
ceptible nodes rewire, and they manage unerringly to rewireto a node that is also
susceptible. Under these conditions rewiring always reduces the number of links that
are accessible for epidemic spreading and therefore theprevalence of the disease,
i.e., the density of infected, is always reduced by this formof rewiring behavior.
Less optimistic rewiring rules have been explored by Zanette [23], and Zanette and
Risau-Gusmán [20, 25] and will be addressed in Sec. 3.2.

Let us now study the dynamics of the adaptive SIS model with the tools of nonlin-
ear dynamics. For this purpose we need to derive a low-dimensional emergent-level
description of the system. Convenient observables, so-called moments, are given
through the densities of certain subgraphs. The number of links contained in such a
subgraph is called the order of the respective moment. Dynamical properties of the
moments, averaged over many realizations of the stochasticprocess, can be sum-
marized in a system of ODEs. Due to the contact process, however, dynamics of
moments of ordern essentially depend on moments of ordern + 1, resulting in
an infinite cascade of differential equations. Its truncation necessitates an approx-
imation of higher order moments in terms of lower order moments, the so-called
moment closure approximation.

Below, we will derive an emergent-level description of the adaptive SIS model
using moment closure approximation. In the SIS model, the moments of zeroth order
are the densities of infected and susceptibles,[I] and [S]. First order moments are
the per-capita densities of SS-, SI- and II-links,[SS], [SI] and[II], and second order
moments the densities of triplets[ABC] with a given sequence of statesA,B,C ∈
{I,S}. Due to the conservation relationsS + I = 1 and[SS]+ [SI]+ [II] = 〈k〉 the
dynamics of the zeroth and first order moments are entirely captured by the balance
equations for[I], [SS], and[II]. A further advantage of the normalization relations is
that we can write all subsequent equations as if we were dealing with a number of
individual nodes and links instead of densities.

Let us start by writing a balance equation for the density of infected nodes. Infec-
tion events occur at the ratep[SI] increasing the number of infected nodes by one;
Recovery events occur at a rater[I] and reduce the number of infected nodes by one.
This leads to

d
dt

[I] = p[SI]− r[I]. (1)

The equation contains the (presently unknown) variable[SI] and therefore does not
yet constitute a closed model. One way to close the model werea mean field ap-
proximation, in which the density of SI-Links is approximated by[SI] ≈ 〈k〉[S][I].
However, in the present case this procedure is not feasible:Rewiring does not alter
the number of infected and hence does not show up in Eq. (1). Thus the mean-field
approximation is not able to capture the effect of rewiring.Instead, we will treat
[SI], [SS], and[II] as dynamical variables and capture their dynamics by additional
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balance equations. This approach is often called moment expansion as the link den-
sities can be thought of as the first moments of the network.

As stated above, it suffices to derive balance equations for the densities of SS- and
II-links. The density of SI-links can then be obtained from the conservation relation.
First the II-links: A recovery event can destroys II-links if the recovering node was
part of such links. The expected number of II-links in which agiven infected node
is involved is 2[II]/[I]. (Here, the two appears since a single II-link connects to two
infected nodes.) Taking the rate of recovery events into account, the total rate at
which II-links are destroyed is simply 2r[II].

To derive the rate at which II-links are created is only slightly more involved.
In an infection event the infection spreads across a link, converting the respective
link into an II-link. Therefore every infection event will create at least one II-link.
However, additional II-links may be created if the newly infected node has other
infected neighbors in addition to the infecting node. In this case the newly infected
node was previously the susceptible node in one or more ISI-triplets. Thus, we can
write the number of II-links that are created in an infectionevent as 1+ [ISI]/[SI].
In this expression the ‘1’ represents the link over which theinfection spreads while
the second term counts the number of ISI-triplets that run through this link. Given
this relation we can write the total rate at which II-links are created asp[SI](1+
[ISI]/[SI]) = p([SI]+ [ISI]).

Now the SS-links: Following a similar reasoning as above we find that infection
destroys SS-links at the ratep[SSI]. Likewise SS-links are created by recovery at
the rater[SI]. In addition SS-links can also be created by rewiring of SI-links. Since
rewiring events occur at a ratew[SI] and every rewiring event gives rise to exactly
one SS-link the total rate at which rewiring creates SS-links is simplyw[SI].

Summing all the terms, the dynamics of the first moments can bedescribed by
the balance equations

d
dt

[SS] = (r + w)[SI]− p[SSI] (2)

d
dt

[II] = p([SI]+ [ISI])−2r[II]. (3)

Again, these equations do not yet constitute a closed model,but depend on the un-
known second moments[SSI] and[ISI]. However, the first order-moment expansion
captures the effect of rewiring. While we will return to the equation above later,
a feasible way of closing the system is to approximate the second moments by a
mean-field-like approximation: thepair approximation.

Let us start by approximating[ISI]. One half of the ISI-triplet is actually an SI-
link, which we know occurs at the density[SI]. In order to approximate the number
ISI-triplets running through a given link we have to calculate the expectation value
of the number ofadditional infected nodes that are connected to the susceptible
node. For this purpose let us assume that the susceptible node of the given SI-link
has an expected number of〈q〉 links in addition to the one that is already occupied in
the SI-link. Every one of these links is an SI-link with probability [SI]/(〈k〉S). (Here,
we have neglected the fact that we have already used up one of the total number of
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SI-links. This assumption is good if the number of SI-links is reasonably large.)
Taking the density of SI-links and the probability that theyconnect to additional
SI-link into account we obtain

[ISI] = κ
[SI]2

[S]
(4)

whereκ = 〈q〉/〈k〉 remains to be determined. The quantity〈q〉 that appears inκ is
the so-calledmean excess degree. Precisely speaking it denotes the expected number
of additional links that are found by following a random link.

Subsequently we will assume thatκ = 1. This assumption will be substantiated
in the reasoning of Sec. 3.3. Here, we only state that it allows us to approximate the
density of triplets by[ISI] = [SI]2/S, and following a similar argumentation[SSI] =
2[SS][SI]/[S]. Substituting these relations into the balance equations we obtain a
closed system of differential equations

d
dt

[I] = p[SI]− r[I] (5)

d
dt

[SS] = (r + w)[SI]−2p[SI]
[SS]

[S]
(6)

d
dt

[II] = p[SI](1+
[SI]
[S]

)−2r[II] . (7)

The system of differential equations can now be studied withthe tools of dy-
namical systems theory. Gross et al. compare the analyticalresults thus obtained
with detailed-level simulations of the full model and find both in very good agree-
ment [11]. This indicates a high accuracy of the emergent-level description (5–7).

Regarding the comparison of the emergent-level ODE description and the detailed-
level simulations two facets are worth noticing: Firstly, the equilibrium solutions of
the ODE system correspond in general to highly dynamic states on the detailed
level, in which individual nodes undergo infection and recovery and links are con-
tinuously rewired. Secondly, qualitative transitions in the dynamics, which appear
as bifurcations in the context of the ODE system, correspondto phase transitions
in the context of the individual-based simulations. Below,we use the terminology
of bifurcations to briefly summarize the dynamical repertoire of the adaptive SIS
model.

In contrast to the models of opinion formation, which have been discussed in
Sec. 2, the adaptive SIS model features three instead of two processes. As a con-
sequence, co-dimension one bifurcations may occur and therefore dynamics can be
expected to be more complex than in the models discussed above. Figure 5 shows
the two parameter bifurcation diagram which results from the analysis of Eqs. (5–
7). In the white and light gray regions there is only a single attractor, which is a
healthy state in the white region and an endemic state in the light gray region. In the
medium gray region both of these states are stable. Another smaller region of bista-
bility is shown in dark gray. Here, a stable healthy state coexists with a stable epi-
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demic cycle. The transition lines between these regions correspond to saddle-node
(dashed), Hopf (continuous), and cycle fold (dotted) bifurcations. The dash-dotted
line marks a trans-critical bifurcation that corresponds to the threshold at which
epidemics can invade the disease free system. Increased rewiring increases the epi-
demic threshold significantly. This contrasts to models of opinion formation where
increased rewiring decreases the probability of complete consensus. The reason for
this difference between models of opinion formation and models of epidemics is
that a dissenting node does not change its opinion if isolated while an infected node
eventually recovers.

Fig. 5 Two parameter bifur-
cation diagram showing the
dependence on the rewiring
ratew and the infection prob-
ability p at fixed recovery rate
r = 0.002. Figure extracted
from [11].

Healthy

Endemic

Oscillatory

Bistable

At high rewiring rates, the adaptive SIS model can approach an oscillatory state
in which the prevalence of the epidemic changes periodically. The oscillations are
driven by the two antagonistic effect of the state-specific rewiring rule. On the one
hand, rewiring isolates the infected and thereby reduces the prevalence of the dis-
ease. On the other hand, rewiring leads to an accumulation oflinks between sus-
ceptibles and thereby forms a tightly connected cluster. Atfirst the isolating effect
dominates and the density of infected decreases. However, as the cluster of suscep-
tibles becomes larger and stronger connected a threshold iscrossed at which the
epidemic can spread through the cluster. This leads to a collapse of the susceptible
cluster and an increased prevalence which completes the cycle. The parameter re-
gion in which the oscillations occur is enlarged if one takesinto account that the
rewiring rate can depend on the awareness of the population and therefore on the
prevalence of the epidemic [10].

3.2 Other approaches

Exploring the adaptive SIS model, Gross et al. were able to show that even in an
optimistic scenario, where only susceptible individuals rewire and reconnection al-
ways occurs toward an susceptible individual, rewiring does not automatically lead
to the extinction of the disease but allows for rich dynamics. Variants of the topolog-
ical evolution rule, in which not only susceptible but also infected individuals may
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rewire their links, have been explored by Zanette and Risau-Gusmán [20, 25]. In
these contributions, the authors prove that rewiring remains advantageous for sup-
pressing the disease even if the isolation of infected agents is modeled to be less
effective than in [11].

Other extensions of the above-discussed model concern the analytical treatment
and the state inventory. An alternative to the tool of momentclosures approximation
is proposed by Gross and Kevrekidis [10]: Automated moment closure dispenses
with analytical approximations of higher order moments andinstead numerically
computes the closure terms on demand. Additional state are included in the fol-
lowing models: The SIRS model, extends the scenario of infected and susceptible
individuals by individuals that have recovered from the disease and are temporary
resistant (R) against reinfection. The adaptive SIRS modelhas been studied by Shaw
and Schwartz [21] and is discussed in Chapter ?. In [20], Risau-Gusmán and Zanette
extend the SIS scenario by an additional state that models the stage of the disease in
which individuals are infected but yet free of symptoms. Nodes in these state appear
to be susceptible, but have already been in contact with the infectious agent, and
will eventually progress to the infected phase.

3.3 Moment closures on adaptive network

The derivation of the Eqs. (5–7) has involved approximations at various stages. Nev-
ertheless the predicted bifurcation diagrams are in very good agreement with the nu-
merical results. This make us to address the particular advantages which adaptivity
add to the tool of moment closure approximations.

Let us first address the topological implications of the usedapproximation
κ = 〈q〉/〈k〉 = 1. The mean excess degree〈q〉 of a network is governed by two
opposing effects [17]: One the one hand we are only counting the additional links,
so that for a node of given degreek the excess degree isq = k −1. On the other
hand, we have reached the node by following a link and therefore have a higher
probability to arrive at a node of high degree. Depending on the network topol-
ogy the〈q〉 can therefore be larger or smaller than〈k〉. It is a special property of
Erdös-Renyi random graphs that both effects cancel, so that 〈q〉 = 〈k〉 andκ = 1.
Smaller values ofκ are found in homogeneous networks such as regular lattices
while networks with a wider degree distribution generally correspond to larger (and
in scale-free networks even diverging) values ofκ . Thus,κ = 1 could be called a
random-graph-like approximation. Note that simulations of the adaptive SIS model
reveal the emergence of state-specific degree distributions, which are considerably
broadened compared to the initial Poissonian degree distribution [11]. However, the
results presented here show that the approximationκ = 1 yields good results even
for networks with a relatively wide degree distribution.

The pair approximation[ABC] ∝ [AB][BC]/[B], which is applied above, bases on
the assumption that the states A and C of next nearest neighbors are independent.
In particular, the three nodes of type A, B and C are assumed not to form a triangle.
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For the case of static networks, many efforts have been made to release this assump-
tion and thus enlarge the scope of the approximation. Among others, Keeling et al.
propose to account for the presence of triangles by means of aclustering parameter
φ [13]. The moment closure, which results from Ref. [13], is evaluated in Ref. [18]
by comparison with agent-based simulations. Thereby, Parham et al. show that the
moment closure yields a good approximation for dynamics on random networks,
but is limited in case of networks whose geometrical structure cannot sufficiently be
described by the clustering parameterφ . To overcome this problem, Peyrard et al.
include long-range correlations to the moment closure approximation and therewith
adapt it to networks with more complex geometric features such as longer loops
[19]. However, in the context of adaptivity, geometric features of the initial network
as well as long range correlations of states are suppressed as the network continu-
ally mixes itself. One could say that, over time, the adaptive network is an ensemble
of itself. This may explain why the pair approximation, which is known to be ap-
propriate in the case of static random networks only, performs well if applied to the
adaptive SIS model.

4 Summary and Outlook

In this chapter, we have reviewed a selection of recent papers concerned with opin-
ion formation and epidemic spreading on adaptive networks.

Comparing the reviewed approaches, we have focused on threemajor aspects
in which models differ: First the number of single-node states a model captures,
second the topological evolution rules and third the way in which the symmetry
of interactions is broken. In models of opinion formation, differences in the most
subtle aspect, namely the direct or reverse implementationof the opinion update,
have crucial impact on the system’s behavior, whereas differences in the two other
aspects do not lead to qualitative changes. In models of epidemic spreading, the
asymmetry of interaction is inherent in the modeled situation and can therefore not
be modified. The particular choice of the topological evolution rules influences the
system’s behavior only in minor respects. Changes in the number of possible single-
node states, however, essentially changes the system’s behavior as the number of
states is closely related to the number of state-specific processes.

In all reviewed models, adaptive dynamics lead to the formation of state-homo-
geneous subpopulations, providing an example for the appearance of global struc-
ture from local rules. The subpopulations exhibit different degree distributions if the
rewiring rule is sensitive to differences between states. This might explicitly be the
case like in the epidemic SIS model or be due to subtle asymmetry like in the rVM
and dVM.

The coupling of state-specific degree distributions and asymmetric exertion of
influence can cause that a system is stabilized in a dynamicalequilibrium in which
two single-node states are in average equally represented.In the dVM, any disparity
in the distribution of the competing opinions is is immediately damped. In models
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of epidemics, the restoring force acts with a time delay thatis induced to the system
by the local process of recovery. This interaction can lead to oscillations.

Moment closure approximations allow the analytical treatment of contact pro-
cesses on adaptive networks. In the context of adaptivity both, the performance and
the simplicity of this tool, are improved which makes the investigation of further
generalizations a promising topic. Increasing the number of single-node states in a
model increases the number ofnth order moments for alln; Including higher order
processes increases the orderm, in which the system can reasonably be closed. That
is, the more complex the system under consideration, the more differential equations
we will have to formulate and to analyze. The latter task seems feasible as bifurca-
tion programs are able to treat in the order of 103 ODEs simultaneously. Maybe the
former task, too, can in future efficiently be solved by a numerical routine, which
translates a set of abstract processes in a set of differential equations.
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