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T. Gross, W. Ebenhöh and U. Feudel, Instıtut für Chemie und Biologie des Meeres,
Carl von Ossietzky Universität, DE-26111 Oldenburg, Germany (thilo.gross@
physics.org).

The long term dynamics of any deterministic system can

either be stationary, periodic, quasiperiodic or chaotic.

Although ecological models were among the first

examples of chaotic dynamics (May 1976) the question

whether chaos is an ecological reality remains open

(May 1987, Upadhyay et al. 1998, Rai and Schaffer

2001, Cushing et al. 2002).

In nature chaos is generally difficult to detect because

of the presence of observational noise (Nychka et al.

1992, Ellner and Turchin 1995). Nevertheless, chaos has

been found for instance in the dynamics of perennial

grasses (Tilman and Wedin 1991), flour beetles (Cushing

et al. 1996) and boreal rodents (Hanski et al. 1993).

Many other systems seem to be in critical states at the

edge of chaos (Turchin and Ellner 2000).

From the theoretical point of view population

dynamics should be chaotic if chaos is in principle

possible in a given system and proves to be advantageous

in the evolutionary context. Regarding the effect of

chaos on the evolutionary fitness of species two main

lines of reasoning exist. On the one hand it is argued that

the seemingly random behavior that characterizes chaos

can eventually cause the extinction of species (Lande

1993). On the other hand, it has been proved that chaotic

fluctuations are desirable in a spatially extended envir-

onment (Allen et al. 1993, Solé and Gamarra 1998,

Petrovskii et al. 2004). Such fluctuations increase the

chance that populations survive periods of detrimental

conditions in isolated patches. Starting from these

patches the surrounding area can be repopulated once

the conditions improve. Following this line of reasoning

chaotic dynamics can increase the chances of species

survival. Consequently, it is reasonable to expect that

ecological systems could evolve towards chaotic regions

in parameter space if such regions exist.

While chaotic attractors have been found in many

models (Hastings and Powell 1991, Boer et al. 1998) they

seem to be absent from others. For instance it was shown

by Ruxton and Rohani (1998) that chaotic regions exist

in certain models, but disappear if the model structure is

perturbed in a certain way. It has often been postulated

that chaos would disappear if sufficient biological detail

were taken into account (Fussmann and Heber 2002,

Kondoh 2003). However, from a dynamical systems

point of view one would expect that increasing the

complexity of the model increases the complexity of the

dynamics as well (May 1973). Consequently, the ques-

tion arises whether chaos exists generically in ecological
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systems. If chaos is generic feature of a given model its

existence does not depend strongly on assumptions that

are made in the model. In this case chaos is likely to

occur in the natural system as well.

In this paper we prove the existence of complex (that

is, chaotic) dynamics in a simple, but very general food

chain model. This model is a generalization of a large

number of models that are discussed in ecological

literature. A similar model has been used recently to

investigate the effect of non-standard predator response

functions (Gross et al. 2004). In that paper we have

shown that the stability properties of the model are very

sensitive to the exact shape of the response functions.

In order to achieve a higher degree of generality we

have extended the model to accommodate additional

mortality terms and noninteger exponents of closure.

The exponent of closure describes the mortality of the

top predator in the food chain. It is often very sensitive

to changes in environmental parameters and has a large

impact on the food chain dynamics (Edwards and Yool

2000). The exponent of closure is therefore of pivotal

importance for the coupling of biological and physical

processes (Edwards and Bees 2001). High exponents of

closure have a damping effect on food chain dynamics.

In Steele and Henderson (1992) the hypothesis was

raised that even limit cycles disappear at high exponents

of closure. Although this was shown to be wrong

Edwards and Yool (2000), high exponents of closure

are still widely believed to prevent chaotic dynamics.

However, in the folllowing we show that chaotic para-

meter regions generally exist in long food chains with

high exponents of closure.

To confirm the existence of chaotic regions in a

general model is quite difficult. Numerically chaos can

be detected by computing Lyapunov exponents, which

measure the divergence of neighboring trajectories �/ a

basic characteristic of chaos. Apart from computational

problems which arise due to the large separation of time

scales the numerical approach has a conceptual dis-

advantage. Numerically we can only deal with specific

systems which makes it very difficult to draw general

conclusions. By contrast, very general systems can be

studied analytically. However, a direct analytical proof of

the existence of chaos is only possible for very few

systems.

The emergence of chaotic behavior is closely con-

nected to the existence of certain bifurcations of higher

codimension (Kuznetsov 1995). We show that these

bifurcation can be computed for very general models.

In this way the generic existence of chaos can be proved

indirectly. Our analysis reveals that in food chains of

length four or more such bifurcations do generally exist.

The paper is organized as follows: in ‘‘A general food

chain model’’ we review and extend the general food

chain model from Gross et al. (2004). The model allows

us to discuss local bifurcations without restricting the

predator response to a specific functional form. Some

important bifurcations and their implications are

discussed in ‘‘Bifurcations of the general food chain

model’’. Local bifurcation analysis is then used in

‘‘Chaos in the general food chain model’’ to discuss

the effect of high exponents of closure in food chains of

length three to six. The results are illustrated by

numerical investigation of ‘‘A specific example for the

emergence of chaos’’. Finally, we discuss our findings.

A general food chain model

In order to study the existence of chaos at high

exponents of closure we extend the general food chain

model introduced by Gross et al. (2004). In this previous

work we have shown that increasing the amount of

available prey destabilizes the food chain if standard

response functions (i.e. Holling functions) are used. This

paradox of enrichment is well known from ecological

literature. However, we have also shown that enrichment

can have a stabilizing effect if the response functions

have a slightly different shape. This shows that the

dynamics of the model depends qualitatively on the

precise shape of the response function. We therefore

avoid to restrict the predator�/prey interaction to any

specific functional form. As a result our conclusions are

valid for a whole class of different food chain models.

We consider a general food chain of N trophic levels.

Each of these levels is occupied by one model species. In

a classical food chain the model species represents actual

biological species. However, in literature many models

are studied in which the model species stand for large

groups of ecological species. For instance the

phytoplankton�/zooplankton food chain proposed by

Steele and Henderson (1992) consists of two model

species which denote the total abundances of phyto-

plankton an zooplankton respectively. In this sense the

general food chain model studied here can be regarded

as a generalization of a large number specific models

that describe food webs as well as food chains.

In the general food web model the biomass or

abundance of model species n is denoted by the state

variable Xn: Whether abundance or biomass is used

depends on the specific system under consideration. In

this paper we use the two terms equivalently.

We assume the primary production of biomass to be

some function S of the biomass of the primary producer

X1: All other species increase their biomass by feeding

on other species. The species n feeds upon species n�1

and is fed upon by species n�1: We assume that the

predation rates are proportional to the predator biomass

and to some general response function Gn of the prey

biomass. Furthermore we take into account that only a

fraction hn of the biomass lost by the prey can be

converted into predator biomass. The top-predator
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mortality is given in terms of a function D of the top-

predator abundance. For all other species (apart from

primary producer and top-predator) we assume the

mortality to be proportional to the abundance of the

species.

The food chain is described by the following system of

ordinary differential equations (ODEs)

Ẋ1 � S(X1)�G1(X1)X2

Ẋn � hnGn�1(Xn�1)Xn�Gn(Xn)Xn�1�MnXn

ẊN � hNGN�1(XN-1)XN�D(XN) (1)

where n�/2. . .N�/1.

We consider the dynamics around a steady state. The

biomass in the steady state are denoted by X+
1; . . . ;X+

N:
We assume that the steady state is positive (/X+

n�0 for

n�1 . . . N) but not necessarily stable. Note, that there

may be some cases in which no positive steady state

exists. However, in most cases there is at least one

positive steady state. As we show in the following most

food chains have more than one positive steady state. In

this case the analysis presented here can be applied to

each steady state individually. We can use the steady

state under consideration to normalize the ODE system.

In the following we use lower case symbols for normal-

ized functions and variables. We define

xn � Xn=X+
n

gn(xn) � Gn(X+
nxn)=Gn(X+

n)
s(x1) � S(X+

1x1)=S(X+
1)

d(xN) � D(X+
Nxn)=D(X+

N)
bn � Gn(X+

n)X+
n�1=(MnX+

n�Gn(X+
n)X+

n�1)

(2)

Note that the normalized steady state is X�
1�. . .�

X�
N�1 and gn(x+

n)�s(x+
1)�d(x+

N)�1: Using the nor-

malized coordinates, the general ODE system can be

written as

ẋ1 � a1(s(x1)�g1(x1)x2)
ẋn � an(gn�1(xn�1)xn�bngn(xn)xn�1�(1�bn)xn)

ẋN � aN(gN�1(xN�1)xN�d(xN)) (3)

As a result of the normalization we get N new

parameters a1; . . . ; aN: Considering the ODEs in the

steady state shows that these parameters are given by

a1 � S(X+
1)=X+

1 � G1(X
+
1)X

+
2=X+

1

an � hnGn�1(X
+
n�1) � Gn(X+

n)X+
n�1=X+

n�Mn

aN � hNGN�1(X
+
N�1) � DN(X+

N)=X+
N (4)

We can not compute the values of a1; . . . ; aN with the

chosen degree of generality. But, we can guess their

values based on biological considerations. From Eq. 3 it

is apparent that the parameter an denotes the time scale

on which the dynamics of species n takes place. In other

words an denotes the per-capita growth rate and the per

capita death rate of individuals of species n in the steady

state. In nature an allometric slowing down is observed

in many food chains (Hendriks 1999). That is, the ratio r

of prey and predator time scales is independent of the

predator�/prey pair under consideration. Furthermore,

one of the time scales can always be set to one by

renormalizing time. It is therefore reasonable to assume

an�rn�1 (5)

Let us now consider the stability of the normalized

steady state. The local stability of steady states depends

on the eigenvalues of the Jacobian in the steady state.

The Jacobian J is a N�N matrix with

Jij�
@ẋi

@xj

(6)

The Jacobian of our food chain model contains the

expressions

@s(x1)

@x1
j
x1�x+

1

“ f

@gn(xn)

@xn
j
xn�x+

n

“ gn

@d(xN)

@xN
j
xN�x+

N

“ p

(7)

Using these definitions the Jacobian in the normalized

steady state can be written as

J�

1

r1

:::
rN�2

rN�1

0
BBBB@

1
CCCCA

�

(f�g1) �1

g1 v2 �b2:::
:::

:::
gN�2 vN�1 �bN�1

gN�1 (1�p)

0
BBBB@

1
CCCCA

where vn�bn(1�gn): Since no other parameters appear

in the Jacobian, the stability of the normalized steady

state is determined by r; p; f; g1 . . . gN�1 and

b2; . . . ; bN�1: Let us now examine these parameters

more closely.

The parameter bn denotes the fraction of the biomass

flow in the steady state that is lost by species n because

of predation. Consequently, 1�bn is the fraction of the

losses that is due to mortality (Eq. 2).

The parameter r describes the separation of time

scales in the food chain. For r close to zero the

separation of time scales is large. In this case the

dynamics of every predator is much slower than

the dynamics of its prey. At r�1 the dynamics of all

species happens on the same timescale. In general we

expect that the steady states are more stable in food

chains with small r than in those with large r: However,

we will see in the following that this is not always the

case.
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For the stability of steady states the parameters

g1; . . . ; gN are very important. High values of gn indicate

that the predator n�1 is very sensitive to the density of

its prey xn: While, at small values of gn; the predators

hardly notice variations in the prey density. If a simple

response function (for instance Holling Type II) is used

small values of gn occur if prey is abundant, while scarce

prey corresponds to high gn: In order to present our

result in a convenient way we assume

g1� . . .�gN�1“G (8)

If g1; . . . ; gN�1 are not identical the bifurcation diagrams

differ slightly from the ones shown here. However, our

conclusions do not depend on the identity of the

parameters in a critical way.

The parameter f describes the availability of nutrients

or the rate of nutrient supply. If f is 1 the gain of the

primary producer is proportional to its abundance. This

is typically the case in environments with unlimited

carrying capacity. Smaller values of f indicate that the

environment has some finite carrying capacity. At f�0

the gain ofthe primary producer does not depend on its

abundance at all. This behavior would be strange for a

biological species of primary producers. However, we

have to keep in mind that x1 does not necessarily need to

be used to describe a biological species. For instance x1

can be used to model a nutrient which is added at a

constant rate and does not leave the system unless it is

consumed. In Gross et al. (2004) we have discussed the

effect of f on a general food chain. In the context of that

article f is called 1�h: It turned out that different

choices of f do not alter the behavior of the model

qualitatively. Therefore we consider only the case f�0:5
in this paper.

In our model the most interesting parameter is p: This

parameter is commonly called exponent of closure. In

ecological models the closure term is often assumed to

be a mononomial. That is,

D(XN)�cX p
N (9)

where c is a constant. By applying Eq. 2 and 7 it can be

checked that the exponent p of the closure term from

Eq. 9 is indeed the parameter p defined in Eq. 7.

The value of p in any given system depends on the

main cause of top predator mortality. For instance, most

diseases can be modeled by assuming a biomass loss

which is roughly proportional to the square of biomass

density. In this case the closure is quadratic and p�2:
By contrast, natural mortality is proportional to the

biomass density. If this is the main cause of top predator

biomass loss the closure is linear and p�1: Another

possible cause of top predator mortality is predation by

a super predator which is not explicitly modeled. In this

case p depends on the feeding strategy employed by this

super predator. For instance filtration feeders generally

impose linear closure on the food chain. While predation

by an ambush feeder can be described with a quadratic

closure term. A more detailed discussion of this point is

given by Edwards and Bees (2001).

In nature there is often more than one cause for top

predator mortality. For instance, in a given ecosystem,

natural mortality as well as predation by a super

predator employing ambush feeding may be of impor-

tance. Such situations can be described by non-integer

exponents of closure between one and two. For instance

a closure term

DN(XN)�cqX
q
N�cuX u

N (10)

yields an exponent of closure

p�
qcqX

�q
N � ucuX�u

N

cqX�q
N � cuX�u

N

(11)

which is a weighted average of the individual exponents

/q and u:
In many systems the exponent of closure is an

important link between physics and biology. Take for

instance a food chain in an aquatic system. Increasing

the turbulence of the water increases natural mortality

(caused by shear forces). Although the total mortality

increases, the linear mortality terms become relatively

more important. As a result, the exponent of closure

decreases. Furthermore, some super predators may

change their strategy from ambush to filtration feeding,

which is more efficient in a turbulent environment.

Bifurcations of the general food chain model

A general food chain model has been outlined in the

previous section. In this section we discuss some

bifurcations in general. These bifurcations play an

important role in our discussion of the model’s dynamics

in ‘‘Chaos in the general food chain model’’. A more

detailed treatment of this subject can be found in

most textbooks on the theory of dynamical systems

(Argyris et al. 1994, Glendinning 1994, Kuznetsov 1995,

Guckenheimer and Holmes 2002).

A bifurcation is a point in parameter space in which

the dynamics changes in a sudden, discontinuous and

qualitative way. Bifurcations can be classified according

to their codimension. The codimension of a bifurcation

is the number of parameters that have to be varied in

order to find the bifurcation point.

We start by considering some codimension-1 bifurca-

tions of steady states. These bifurcations are important

for the formation of the bifurcations of codimension-2

on which our conclusions are based.

A steady state in an ODE system is stable if all

eigenvalues of its Jacobian have negative real parts.

A bifurcation occurs if eigenvalues cross the imaginary

axis of the complex plane. Since the Jacobian is a real

matrix the eigenvalues have to be real or part of a
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complex conjugate pair of eigenvalues. In bifurcations of

codimension-1 only a single eigenvalue or a single pair of

eigenvalues can be involved.

In general, the crossing of the imaginary axis by a

single real eigenvalue corresponds to a saddle-node

bifurcation. In this bifurcation two steady states collide

in parameter space. Both states vanish in the collision. In

ecological models the saddle-node bifurcation is fre-

quently observed in a degenerate form, which is called

transcritical bifurcation. In this bifurcation two steady

states meet and exchange stability properties. A tran-

scritical bifurcation of a stable steady state indicates a

transition from one steady state to another one. Note

that, the presence of this bifurcation proves that there

has to be more than one steady state. Because of the

normalization, the saddle-node and transcritical bifurca-

tions are difficult to distinguish in the general food chain

model that has been proposed in ‘‘A general food chain

model’’. In the following we refer to all bifurcations

which are characterized by the presence of a single zero

eigenvalue as general saddle-node bifurcations. For our

analysis of the general food chain model this bifurcation

is only of secondary importance.

In many ecosystems the primary departure from

stationary behavior occurs in a Hopf bifurcation. In

this bifurcation a complex conjugate pair of eigenvalues

crosses the imaginary axis. In the bifurcation the steady

state becomes unstable. At the bifurcation point a stable

limit cycle emerges (supercritical Hopf) or an unstable

limit cycle vanishes (subcritical Hopf). In the super-

critical Hopf bifurcation a transition from stationary to

oscillatory behavior takes place. The subcritical Hopf

bifurcation likewise gives rise to oscillations. However

these are only of transient nature and disappear as the

system approaches some other attractor.

Since both the Hopf and the general saddle-node

bifurcation are of codimension-1 we can expect the

bifurcation points to form hypersurfaces in the para-

meter space. That is, in a three dimensional parameter

space the Hopf bifurcation points are in general located

on surfaces consisting entirely of such points. Likewise,

the general saddle node bifurcation points form general

saddle node bifurcation surfaces.

Many important insights can be gained from the

investigation of codimension-1 bifurcations of steady

states. However, the main focus of this paper is chaos.

A steady state can not evolve directly into a chaotic

attractor via a codimension-1 bifurcation. Instead, the

formation of a chaotic attractor often involves an infinite

number of bifurcations.

A route to chaos which is often observed starts with a

Hopf bifurcation in which a limit cycle is formed.

Subsequently, the limit cycle undergoes an infinite

sequence of period doubling bifurcations. The chaotic

attractor is formed from a limit cycle with infinite

period.

Another route from stationary to chaotic behavior

involves the creation of tori. Again the first bifurcation

on this route is a Hopf bifurcation in which a limit cycle

is formed. As the parameters are changed further a

Neı̆mark-Sacker bifurcation occurs which marks a

transition from periodic to quasiperiodic behavior. The

quasiperiodic motion takes place on a two-torus at first.

From the two-torus chaos can be reached directly or via

the formation of a three-torus.

In ecological systems a transition to chaos via the so-

called Shil’nikov mechanism is often observed (Deng

and Hines 2002). This route to chaos is closely connected

to homoclinic bifurcations. In a homoclinic bifurcation a

limit cycle meets a saddle point. In the bifurcation a

homoclinic orbit, that is a trajectory that approaches the

saddle for t 0 � and t 0��; is formed. Under certain

conditions a chaotic attractor is formed from an infinite

number of saddle cycles, which emerge close to the

bifurcation.

The transitions to chaos presented here as well as

several others have been studied in specific food chains

(De Feo and Rinaldi 1998). The aim of this paper is

however, to prove that chaos exists in a very general

system, namely the general food chain model introduced

above. Because of the generality of the model, numerical

approaches can not be applied. On the other hand a

direct analytical proof for the existence of chaos is not

possible with the desired degree of generality. However,

the existence of chaotic regions can be deduced indirectly

from certain bifurcations of codimension-2.

To find a codimension-2 bifurcation two parameters

have to be varied. The codimension-2 bifurcations

form hyper-lines in parameter space, that is they appear

as lines in a three parameter bifurcation diagram. In

this paper we focus on Takens-Bogdanov, Gavrilov-

Guckenheimer and Double Hopf bifurcations. These

bifurcations are formed on the lines in which codimen-

sion-1 bifurcation surfaces intersect. In the following we

review these bifurcations briefly. A more detailed dis-

cussion of these bifurcations is given by Kuznetsov

(1995).

A simple bifurcation of codimension-2 is the Takens-

Bogdanov (TB) point. In this bifurcation the Jacobian

has a double zero eigenvalue. On the bifurcation line a

Hopf bifurcation surface ends at a general saddle node

bifurcation surface. It can be shown that a homoclinic

bifurcation surface has to emerge from the bifurcation.

This bifurcation can give rise to a chaotic attractor via

the Shil’nikov mechanism.

A much more complicated situation is found in the

Gavrilov-Guckenheimer (GG) bifurcation. Like the

Takens-Bogdanov bifurcation, the GG bifurcation is

found at the intersection of a Hopf bifurcation surface

and a general saddle-node bifurcation surface. However,

in this case the Jacobian has a single zero eigenvalue and

a pair of purely imaginary eigenvalues. Consequently, the
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dynamics near the bifurcation are more difficult to

analyze than in the TB case. In general, a homoclinic

bifurcation and a Neı̆mark-Sacker bifurcation emerge

from the GG bifurcation. The homoclinic bifurcation

indicates the presence of a homoclinic orbit, which may

again give rise to Shil’nikov chaos. At the Neı̆mark-

Sacker bifurcation the limit cycle which has been created

in the Hopf bifurcation becomes a torus, in many (but

not all) cases the torus only exists close to the GG

bifurcation, before it evolves into a chaotic attractor.

The TB and GG bifurcations indicate in many cases

(but not always) the existence of a chaotic region.

Nevertheless we may say that chaotic dynamics are likely

(but not certain) to exist near these bifurcations. In this

paper we draw our conclusions mainly from the presence

of Double Hopf (DH) bifurcations. Double Hopf

bifurcations are formed at the intersection of two Hopf

bifurcations. In the DH bifurcation the Jacobian has two

purely imaginary pairs of complex conjugate eigenvalues.

The analysis of the dynamics is in this case even more

complicated. Nevertheless, it has been shown that a

chaotic region has to exist close to a generic DH

bifurcation (Kuznetsov 1995). Only in degenerate cases

(i.e. Lotka�/Volterra food chains) the creation of a

chaotic attractor can be avoided. Degeneracies are very

special exceptions to a general rule. In models degen-

eracies often appear because of the simple assumptions

on which many models are based. However, the

dynamics encountered in nature is in general generic

(that is, nondegenerate). The probability that a system

observed in nature is by chance degenerate is zero.

We can summarize the contents of this section by

formulating the following approach. The generic exis-

tence of a chaotic region in the food chain model from

‘‘A general food chain model’’ can be proved by showing

that a Double Hopf bifurcation exists. If the Double

Hopf bifurcation extends to high exponents of closure,

the chaotic region extends to high exponent of closure as

well. In the model Double Hopf bifurcations can be

found by computing Hopf bifurcation surfaces. Plotting

the Hopf bifurcations in three-parameter bifurcation

diagrams reveals the Double Hopf bifurcations as

intersection lines of Hopf bifurcation surfaces.

Chaos in the general food chain model

In the previous section we have formulated an indirect

approach by which chaos can be proved to exist. In this

section we apply this approach to the general food chain

model introduced in ‘‘A general food chain model’’.

We start our analysis by computing the codimension-1

bifurcations of the steady states. The general saddle-

node bifurcations can be easily computed by demanding

the determinant of the Jacobian to vanish. For the

computation of Hopf bifurcations we use the method of

resultants (Guckenheimer et al. 1997, Gross and Feudel

2004). This method yields an analytical testfunction. For

long food chains the testfunctions become rather

lengthy. In order to obtain bifurcation diagrams shown

in this paper testfunctions have been computed and

solved using the symbolic algebra software Maple.

Let us consider the case in which the mortality terms

for all species except for the top predator and primary

producer can be neglected (/b2�. . .�bN�1�1): Three

parameter bifurcation diagrams for food chains of

different length are shown in Fig. 1. The three parameter

axes are the relative time scale r; the sensitivity to prey

density G and the exponent of closure p: Every point in

the bifurcation diagram is related to a specific system

with the corresponding parameter values. The surfaces

shown in the diagram consist of codimension-1 bifurca-

tions of steady states. Surfaces of general saddle-node

bifurcations are shown in blue. All other colors corre-

spond to Hopf bifurcations. High sensitivity to prey

abundance, that is high G always stabilizes the normal-

ized steady state. Therefore the normalized steady state

is always stable in the topmost volume of the diagrams,

that is above all bifurcation surfaces. As parameter

values are varied Hopf bifurcations may be crossed,

leaving the topmost volume. At this point the normal-

ized steady state becomes unstable. More bifurcations

may be encountered if parameters are changed further.

However, the steady state is unstable everywhere

except in the topmost volume of parameter space. In

the remainder of this section we discuss each of the

bifurcation diagrams individually. We focus on the

Double Hopf bifurcations, which indicate the existence

of chaos. In addition we point out some other results

regarding the effect of the time scale separation r and the

exponent of closure p on steady state stability.

Let us start by considering the tri-trophic (three level)

food chain. The corresponding bifurcation diagram is

shown in the top left corner of Fig. 1. The diagram

shows a Hopf (red) and a general saddle-node (blue)

bifurcation surface. The primary loss of stability occurs

as the Hopf bifurcation is crossed from above. In the

bifurcation diagram, it can be seen that high exponents

of closure stabilize the food chain as expected. As p is

increased the critical value of G at which the bifurcation

occurs decreases. Therefore the area in which the steady

state is stable grows. Higher codimension bifurcations

seem to be absent from the bifurcation diagram of

the tri-trophic chain. However, there is a single point

(/r�0; p�1;G�0:5) in which the general saddle-node

bifurcation meets the Hopf bifurcation. This point is

part of a line of Gavrilov-Guckenheimer bifurcation

points which extends to lower exponents of closure. As

we increase the exponent of closure, the general saddle-

node bifurcation surface folds back. At higher exponents

of closure no further Gavrilov-Guckenheimer bifurca-

tions are possible. It is reasonableto assume that chaos is
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tri- or the four-trophic case. Which of the two possible

shapes is found depends on whether N is even or odd.

Takens-Bogdanov and Gavrilov-Guckenheimer bifurca-

tions occur therefore at high exponents of closure in

food chains of even length and at low exponents of

closure in food chains of odd length. Most importantly,

Double Hopf bifurcation lines are present in every food

chain with N�/3. Their presence proves that chaotic

regions generically exist in all long food chains.

It may be argued that the chaotic regions disappear if

additional mortality terms are introduced. To prove that

this is not the case we consider the four-trophic food

chain again. In Eq. 2 we have denoted the fraction of the

biomass loss of species n that occurs because of

predation by bn. So far we have assumed that for species

2 and 3 predation is the only cause of biomass loss, that

is b2�/b3�/1. If additional mortality terms are intro-

duced the fraction of the biomass that is lost because of

predation decreases. For the sake of simplicity we

consider the case in which b2�/b3�/b. Fig. 2 shows a

three-parameter bifurcation diagram at p�/1.9. As b

decreases the Double Hopf bifurcation occurs at a larger

separation of timescales (lower r). This shows that even

with strong mortality chaotic regions generically exist at

high exponents of closure. These regions are located in

the biologically interesting parameter range, where time-

scale separation is large.

A specific example for the emergence of chaos

In the previous section we have shown that complex

dynamics can generally be expected to occur in long food

chains. The existence of chaotic regions was deduced

from the presence of a Double Hopf bifurcation of the

steady state. By using this indirect approach we did not

have to restrict ourselves to a specific model but

discussed the general case. However, the creation of the

chaotic attractor itself, involves more complicated bi-

furcations. These bifurcations can not be computed with

the same degree of generality. Let us therefore illustrate

our results by investigating the dynamics of a specific

model.

We consider a food chain which is defined analogously

to Eq. 1. In this specific model we chose the food chain

with four trophic levels (N�/4). We assume logistic

growth of the primary producer and set

S(X1)�A0(C�X1)X1 (12)

where A0 is some constant growth factor and C is the

carrying capacity. The interaction between species is

assumed to be of Holling type II. Furthermore, we

neglect all mortality terms except the closure term which

is assumed to be of mononomial form. This yields the

following the differential equations

Ẋ1 � A0(C�X1)X1�
A1X1X2

K1�X1

Ẋ2 � B1X1X2

K1�X1
�A2X2X3

K2�X2

Ẋ3 � B2X2X3

K2�X2
�A3X3X4

K3�X3

Ẋ4 � B3X3X4

K3�X3
�MX

p
4

(13)

The parameters A0,. . .,A3, B1,. . .,B3, and M which

appear in these equations depend on the specific system

under consideration. Since our aim is to discuss some

arbitrary example we can choose the parameters in a

convenient way. We set

A0�1=(C�1) (14)

An�rn�1(Kn�1); n�1 . . . 3 (15)

Bn�rn(Kn�1); n�1 . . . 3 (16)

M�r3 (17)

In this case X�
1�. . .�X�

4�1 is a steady state and

Xn�/xn for all n. This saves us the work of performing

the normalization. For simplicity we choose K1� . . .�
KN�1�K: The general parameters r and p already

appear in our model. We set C to 3, which corresponds

to f�/0.5. The remaining general parameter G is related

to the specific parameter K by

G�
K

K � 1
(18)

which has been obtained using Eq. 7 and 8.

We can now study the dynamics of this specific model

by numerical computation of Lyapunov exponents. The

Fig. 2. Bifurcations of the four-trophic food chain with high
exponent of closure (p�/1.9). Depending on the relative
separation of timescales r, the fraction of the biomass loss of
species 2 and 3 that is due to predation b, and the species
sensitivity to prey density G. As the mortality becomes more
important (decreasing b), the double Hopf bifurcation that is
formed at the intersection of the two Hopf bifurcation surfaces
(grey surfaces) occurs at larger separation of timescales. In
addition there is a general saddle node bifurcation surface
(white surface).
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Lyapunov exponents measure the rate at which the

distance between neighboring trajectories changes.

Negative Lyapunov exponents indicate approaching

trajectories, while positive Lyapunov exponents corre-

spond to diverging trajectories. The nature of the

dynamics can therefore be deduced from the number of

positive, negative and zero Lyapunov exponents.

In a stable steady state all Lyapunov exponents are

negative. On all other attractors (in a system of ODEs)

there is always at least one zero Lyapunov exponents and

one negative Lyapunov exponent. Take for instance a

stable limit cycle. The Lyapunov exponent which corre-

sponds to the motion along the cycle is zero while all

others are negative. Quasiperiodic motion takes place on

tori. In this case we have a zero Lyapunov exponent for

every dimension of the surface of the torus. That is, two

zero Lyapunov exponents on a two-torus and three on a

three-torus. Higher dimensional tori are rarely encoun-

tered, according to the Ruelle�/Takens theorem (Ruelle

and Takens 1971). On a torus attractor all other

Lyapunov exponent are negative. Positive Lyapunov

exponents on an attractor always correspond to chaotic

motion.

Figure 3 shows a two parameter bifurcation diagram

for the specific model. The Double Hopf bifurcation is

formed at the intersection of the two Hopf bifurcation

lines. The colored areas indicate regions of different

dynamical behavior. In the diagram we have distin-

guished between periodic, quasiperiodic and chaotic

regions based on the computed Lyapunov exponents.

In order to make a clear distinction between periodic

and stationary behavior simulations have been used in

some areas. There is one area in which all Lyapunov

exponents are very small. Here we can not decide

whether the attractor is chaotic or quasiperiodic on the

basis of numerical computation. This is due to the very

slow convergence of the algorithms for computation of

Lyapunov exponents. Still, it can be seen that the chaotic

region extends to high exponents of closure. From Fig. 1

it is obvious that the Double Hopf bifurcation would

occur at even higher exponents of closure if a lower value

of r had been chosen. In this case the chaotic region

could be expected to extend to higher exponents of

closure as well. However, the computation of Lyapunov

exponents becomes more difficult as time scale separa-

tion grows.

Discussion

In this paper we have introduced a very general food

chain model. By looking at higher codimension bifurca-

tions of steady states we were able to show that chaotic

regions generically exist in food chains with more than

three trophic levels. Although high exponents of closure

have a stabilizing effect on steady states they can not

generally prevent chaotic dynamics.

The fact that high exponents of closure stabilize steady

states, but do not prevent complex dynamics conveys an

important message. When talking of stabilizing and

destabilizing effects one should be very careful to

indicate the considered type of dynamical behavior. An

effect or an influence stabilizing steady states may at the

same time destabilize or destroy cycles or tori.

Our findings describe the generic case. In certain

models (like Lotka�/Volterra food chains) degeneracies

may exist which prevent the formation of chaotic

regions. However, these degeneracies should disappear

if the structure of the specific models is disturbed

slightly. It is therefore reasonable to assume that chaotic

parameter regions exist in natural food chains.

The generic existence of chaotic regions does not

imply that the dynamics of long food chains has to be

Fig. 3. Qualitative behavior of a specific four-trophic food
chain, depending on the exponent of closure p and the
sensitivity to prey density G. Top: local bifurcations computed
analytically. The two Hopf bifurcations meet in a codimension-2
double Hopf bifurcation. Bottom: results from the numerical
computation of Lyapunov exponents. The attractor is a steady
state (pattern), a limit cycle (white), a two-torus (medium grey),
a three-torus (light grey) or a chaotic attractor (black). In the
dark grey region all Lyapunov exponents are small. In this
region the nature of the attractor could not be determined.
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chaotic, but that it could be chaotic if this is advanta-

geous from an evolutionary point of view. Although this

point is much debated, some evidence seems to suggest

that this is the case (Solé and Gamarra 1998). Other

findings indicate that the dynamics at the edge of chaos

is particularly advantageous (Gragnani et al. 1998,

Turchin and Ellner 2000).

In this paper we have focused on the dynamics of

general food chains. However, the model species that

form these food chains can be interpreted as groups of

similar biological species. In this way our general food

chain model describes not only a large class of food

chains but also certain food webs.

In order to decide whether chaos is indeed an

ecological reality (or may be even an ecological neces-

sity) even more general models should be studied.

Models that take extra mortality terms, food web

structure, nutrient recycling and evolutionary processes

into account can be formulated and studied essentially

along the same lines as the class of models discussed

here. Other properties of natural ecosystems, like the

effect of a spatially extended environment or external

forcing may be more difficult to deal with and will

probably require a different approach.
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