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Abstract

The analysis of evolution equations such as ordinary or partial differential equations
often splits into two different directions. One either makes minimal assumptions about
their structure and tries to prove general theorems or one studies a particular model
and analyzes its dynamics in detail. Generalized models provide a framework that
allows to study evolution equation models without specifying all functional forms and
they also provide enough flexibility to take into account insight from mathematical
modeling. Although generalized models have been used successfully in many appli-
cations a structural mathematical approach that builds a bridge between theory and
applications has not been developed yet. Here we provide this approach. We show the
wide applicability of the method to ordinary, partial and functional differential equa-
tions. We also illustrate the dynamical analysis of generalized models via theoretical
as well as practical examples.

Keywords: Generalized models, evolution equations, bifurcations, scaling transforma-
tion.

1 Introduction

Generalized models provide a method to analyze dynamical systems with unknown functional
forms. We provide a structural overview on generalized models, their properties and their
applications. The basic problem addressed by generalized models is that mathematical mod-
eling can often not provide an exact set of evolution equations. This is particularly evident
by comparing models from biophysics and classical physics as observed by Guckenheimer
[23]:
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“The Hodgkin-Huxley models are based upon sound biophysical principles, but these prin-
ciples do not constrain the models to a definite set of equations in the same manner that a
few assumptions about fluid properties lead to the Navier-Stokes equations of fluid dynamics.”

Therefore we always seem to face the dilemma that a dynamical analysis requires a given
specified model. Once we specify some of the functions, that are only partially or not at all
known, then we cannot provide a result that is valid for the underlying physical, chemical or
biological process in full generality. Generalized models provide an intermediate alternative
that allows the mathematical modeler to use much of the partial information he has available
but still provides enough flexibility to treat many different alternative models simultaneously.
Our goal here is to give a systematic treatment of generalized models and to detail all the
basic results and ideas of the method. Furthermore, we show that the approach can be
applied to a wide variety of evolution equations and is not limited to ordinary differential
equations. We also develop several examples and highlight several applications to provide a
comprehensive discussion. The main steps of the method are:

(G1) Build a model of the underlying process as evolution equations and group different
terms in the resulting equations.

(G2) Apply a normalizing re-scaling transformation in phase space based on the existence
of an equilibrium point and introduce so-called generalized parameters.

(G3) Interpret the generalized parameters in the modeling context.

(G4) Apply methods such as bifurcation analysis to characterize the dynamics of the gener-
alized model.

We note that steps (G2) and (G4) are rigorous mathematical steps that provide one part
of the method. The steps (G1) and (G3) are based on the application and the design of
an appropriate mathematical model. Both parts have to be applied together for a general-
ized modeling approach to succeed. Several approaches exist that contain ideas similar to
generalized modeling. For example, S-systems [46, 8] group different terms of the evolution
equations. Metabolic control theory [36, 30, 44] considers the idea of a linearized analysis for
a dynamical system using sensitivities; see also Section 3. The idea of re-scaling to simplify
or de-singularize a problem appears in mathematical approaches for analyzing nonlinear sys-
tems; a typical example is provided by the blow-up method [5, 6] that can be viewed as a
phase space re-scaling in suitable coordinates. However, it is important to point out that the
combination of the different ideas in the framework of generalized models provides a very
refined and flexible method.

In Section 2 we introduce generalized models for arbitrary ordinary differential equations
in an arbitrary number of dimensions. We also carry out the normalizing transformation and
prove some of its basic properties for completeness. In Section 3 the generalized parameters
are introduced and their role in the stability and bifurcation analysis is indicated. This
completes the formal construction of the generalized model. In Section 4 several examples are
developed that provide details what information can or cannot be inferred from a bifurcation
analysis of a generalized model. In Section 5 we demonstrate that generalized models can
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also be applied to partial, delay and stochastic differential equations. This shows that the
modeling approach covers a wide variety of evolution equations. In Section 6 we discuss
three successful applications of generalized models. Each application highlights a different
aspect of the possible conclusions and modeling approaches.

2 Generalized Models

We start by introducing generalized models for ordinary differential equations (ODEs). A
general autonomous first-order system of ODEs is given by

dX

dt
= X ′ = F (X ;µ) (1)

where X ∈ R
n are phase space variables, µ ∈ R

p are parameters and the vector field
F : Rn ×R

p → R
n is assumed to be at least continuously differentiable in X and continuous

in µ. If we can specify a particular map F then the main task is to analyze the dynamics of
(1) i.e. to partition the parameter space Rp into regions of qualitatively equivalent dynamics
[41]. If we do not specify any assumptions on F we focus on the abstract analysis of ODEs
[27]. Generalized models provide one possibility to bridge the gap between specific models
and abstract analysis by making some structural assumptions on F without specifying the
map completely. We assume that (1) has a decomposition of the form

X ′
i = Fi(X ;µ) =

Ki
∑

k=1

ai,kFi,k(X ;µ), for ai,k ∈ {−1, 1}, (2)

where the subscript i ∈ {1, 2, . . . , n} indicates the i-th coordinate, Ki ≥ 2 and Fi, Fi,k :
R

n × R
p → R

+. We call terms Fi,k with ai,k = 1 gain terms and those with ai,k = −1
loss terms. We note that the type of decomposition is decided as part of the mathematical
modeling and does not follow a fixed set of rules. Therefore we can always decide how to
choose Fi,k and Ki; it should be noted that the basic principle of grouping the different terms
is often provided by their role in the mathematical model. To illustrate the abstract theory
of generalized models we are also going to use the simple model system given in the next
example.

Example 2.1. Consider an ecological system [21] with prey X1 and predators X2 given by

X ′
1 = F1,1(X1;µ)− F1,2(X1, X2;µ)

X ′
2 = F2,1(X1, X2;µ)− F2,2(X2;µ)

(3)

where F1,1(X1;µ) describes growth of the prey, F2,2(X2;µ) is natural mortality of the predator
and we assume that F1,2(X1, X2;µ) = F2,1(X1, X2;µ) is the predator-prey interaction i.e. X1

is consumed by X2. Note that the decomposition of the predator-prey model into gain and
loss terms is basically prescribed by the mathematical modeling.

A first step to understand the dynamics of (1) is to analyze the stability and bifurcations
of equilibria. Suppose there exists an equilibrium point X∗ so that F (X∗) = 0. The local
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dynamics at X∗ is given to first-order by analyzing the eigenvalues of the Jacobian

J(X ;µ)|X=X∗ = (DXF )(X∗;µ) =

(

∂Fi

∂Xj

(X∗;µ)

)

ij

. (4)

If we do not specify F exactly then X∗ has to be treated as an unknown. The derivatives
of functions/rates at the unknown equilibrium are often difficult to interpret in terms of
physical parameters. Therefore we would like to consider a transformation that allows a
physical interpretation of parameters. Generalized modeling [20] suggests to assume that
X∗

i 6= 0 and to consider the normalizing coordinate change

xi =
Xi

X∗
i

=: hi(X), for i ∈ {1, 2, . . . , n}. (5)

The ODE (1) transforms to

x′
i =

1

X∗
i

Fi(X
∗
1x1, X

∗
2x2, . . . , X

∗
nxn) =: F̃i(x), for i ∈ {1, 2, . . . , n} (6)

where we have omitted the µ parameter dependence for notational convenience. Therefore
the equilibrium X∗ is transformed to x∗ = (1, 1, . . . , 1) =: 1.

Remark: A standard coordinate change in bifurcation theory [24] is to consider the trans-
formation x̄i := Xi −X∗

i so that the equilibrium point is moved to x̄ = (0, . . . , 0) =: 0. This
transformation is mathematically convenient but does not provide a normalization of pa-
rameters as the coordinate change (5).

We can immediately check that the eigenvalues of the Jacobian (4) remain unchanged.

Proposition 2.2. If X∗
i 6= 0 for all i ∈ {1, . . . , N} then the eigenvalues of the Jacobian are

invariant under (5) i.e. spec(DXF (X∗)) = spec(DxF̃ (1)).

Proof. By direct calculation we find that

det
[

(DxF̃ )(1)− λ Id
]

= det

[

(

∂

∂xj

1

X∗
i

Fi(X
∗
1x1, X

∗
2x2, . . . , X

∗
nxn)

)

ij

∣

∣

∣

∣

∣

x=1

− λ Id

]

= det

[

(

X∗
j

X∗
i

∂Fi

∂Xj

(X∗)−
X∗

j

X∗
i

λδij

)

ij

]

(a)
=

(

n
∏

i=1

1

X∗
i

)

det

[

(

X∗
j

∂Fi

∂Xj

(X∗)−X∗
j λδij

)

ij

]

(b)
=

(

n
∏

j=1

X∗
j

)(

n
∏

i=1

1

X∗
i

)

det

[

(

∂Fi

∂Xj

(X∗)− λδij

)

ij

]

= det[(DXF )(X∗)− λ Id]

where we have factored out non-zero scalars in step (a) for each row and in (b) for each column
using linearity of determinants with respect to rows and columns. The result follows.
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The equivalence of eigenvalues and the associated stability properties turns out to be of
primary importance in many applications of generalized models [22]. However, Proposition
2.2 can also be viewed as a corollary to the following global result.

Proposition 2.3. Suppose that F ∈ Ck for some k ∈ N0 ∪ {ω}, where Cω denotes analytic
functions, and that X∗

i 6= 0. Then the ODEs (1) and (6) are Ck-smoothly equivalent via the
map (5).

Proof. Observe that x = h(X) = (h1(X), . . . , hn(X)) is a Ck-diffeomorphism that conjugates
the vector fields

F (X) = (DXh)
−1(X) F̃ (h(X)).

The global smooth equivalence we showed is much stronger than (local) topological equiv-
alence [41] and the normalizing coordinate change (5) can be viewed as leaving the dynamics
completely unchanged. The next steps of generalized modeling involves grouping and label-
ing the free parameters so that they can be interpreted as modeling parameters.

3 Parameters

We introduce a notation for the normalized gain and loss terms

fi,k(x) :=
Fi,k(X

∗
1x1, . . . , X

∗
nxn)

Fi,k(X∗)
=

Fi,k(X
∗
1x1, . . . , X

∗
nxn)

F ∗
i,k

(7)

where F ∗
i,k := Fi,k(X

∗) and we assume that Fi,k(X
∗) 6= 0. Then (6) reads

x′
i =

Ki
∑

k=1

ai,k
F ∗
i,k

X∗
i

fi,k(x), for i ∈ {1, 2, . . . , n}. (8)

As a next step we group two parameters together

β̃i,k :=
F ∗
i,k

X∗
i

. (9)

Remark: From a physical point of view, we can also consider the units in the definition
of β̃i,k. F

∗
i,k is always a rate, for example mass per unit time. Since X∗ has also units of mass

this implies that β̃i,k has the unit 1/time.

Using definition (9) and the equilibrium point condition x′
i = 0 at x∗ = 1 in (8) gives n

conditions

0 =

Ki
∑

k=1

ai,kβ̃i,k for i ∈ {1, 2, . . . , n}. (10)

5



Therefore we can hope to eliminate i parameters. For example, we could try to eliminate
β̃i,1 and set β̃i,1 = ai,1(−

∑

ai,k=1,k 6=1 β̃i,k +
∑

ai,k=−1 β̃i,k). We can formalize the elimination
procedure as follows. Define the vector

β̃ := (β̃1,1, β̃1,2, . . . , β̃1,K1
, β̃2,1, . . . , β̃n,Kn

)T ∈ R
κ (11)

where κ =
∑n

i=1Ki. Then (10) can be re-written as a matrix equation

0 = Aβ̃ (12)

where the n × κ matrix A has elements in {−1, 0, 1}; see also Example 3.2 below. The
rank-nullity theorem gives

κ = dim(ker(A)) + dim(im(A)) = dim(ker(A)) + rank(A)). (13)

This shows that rank(A) is the number of parameters that we can eliminate and that
dim(ker(A)) is the number of remaining parameters after the linear relations (10) have
been applied. The elimination of parameters is related to concepts used in structural kinetic
modeling where the matrix A can be viewed as a stoichiometric reaction matrix with nor-
malized entries [49, 31, 48].

Note that the choice which of the parameters β̃i,k we eliminate is mathematically equiv-
alent. However, it could be of significant importance in applications if we can eliminate the
parameter we know least about. A further optional step is to introduce a parameter αi for
each variable and set

βi,k :=
β̃i,k

αi

. (14)

where we assume that αi > 0.

Remark: From a physical point of view, we want to introduce αi to nondimensionalize.
This implies that αi has to have the unit 1/time while βi,k is dimensionless; in this case,
we can interpret βi,k as ratios. One particular important choice to make this interpretation
more precise is to consider the possible definition [20]

αi :=
∑

k: ai,k=1

β̃i,k =
∑

k: ai,k=−1

β̃i,k (15)

where the equality between the two sums follows from (12). Using this definition we find
that

βi,k =
β̃i,k

∑

k: ai,k=1 β̃i,k

=
β̃i,k

∑

k: ai,k=−1 β̃i,k

which interprets βi,k as the rate associated to the term with index (i, k) divided by the total
gain (or loss) rate i.e. we have obtained a ratio; see also Section 6. We shall not make
explicit use of definition (15) here as it can be viewed as one particular choice of nondimen-
sionalization. One can define a time scale as a physical quantity that has units 1/time.
Therefore we shall call αi time scale parameters from now on. Note that this justifies
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our assumption αi > 0 on the basis of the underlying physical process.

Now we can re-write the differential equation (8) as

x′
i = αi

(

Ki
∑

k=1

ai,kβi,kfi,k(x)

)

, for i ∈ {1, 2, . . . , n} (16)

where the relation (12) is understood to apply as well. We call the parameters αi and βi,k

(resp. β̃i,k) scale parameters. Obviously we have introduced quite a number of scale
parameters to avoid specifying the functions in our model; therefore it is important to know
how many scale parameters will appear in the model. We have the following result:

Proposition 3.1. The number of scale parameters for a generalized model (8) is as follows:

(C1) If β̃i,k are the only scale parameters and β̃i,k 6= β̃l,m for all pairs (i, k) 6= (l, m) then the
minimum number of scale parameters is given by

κ− rank(A) = dim(ker(A)). (17)

If all β̃i,k appear as multiplicative factors after the elimination via Aβ̃ = 0 then one
more parameter can be eliminated.

(C2) If βi,k, αi are the scale parameters and βi,k 6= βl,m for all pairs (i, k) 6= (l, m) then the
minimum number of scale parameters is

dim(ker(A)) + n− η − 1 (18)

where η is the number of scale parameters βi,k that appear as multiplicative pre-factors after
the elimination via (12).

Remark: If the conditions β̃i,k 6= β̃l,m resp. βi,k 6= βl,m are violated then further parame-
ters can obviously be eliminated. However, a violation of this condition is not generic within
the class of vector fields we consider here so we shall not consider this situation any further;
for more on genericity see Section 4.

Proof. (of Proposition 3.1) The previous discussion leading up to equation (13) yields (17).
The second part of (C1) that allows the elimination of one further parameter will be clear
once we proved (C2). For (C2), we have dim(ker(A)) parameters βi,k and n parameters αi

after using the linear relations Aβ = 0. Assume without loss of generality that in the first
η coordinates, the parameters β1,k, . . . , βη,k appear as multiplicative prefactors so that the
ODEs are

x′
1 = α1β1,1

∑K1

k=1 a1,kfi,k(x),
...

x′
η = αηβη,1

∑K1

k=1 aη,kfη,k(x),

x′
η+1 = αη+1

∑K1

k=1 βη+1,kaη+1,kfη+1,k(x),
...

x′
n = αn

∑K1

k=1 βn,kan,kfn,k(x),

(19)
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Now we define new time scale parameters α̃i := αiβi,k = β̃i,k for i ∈ {1, 2, . . . , η} and α̃i = αi

for i ∈ {η + 1, . . . , n} which transforms (19) to

x′
1 = α̃1

∑K1

k=1 a1,kfi,k(x),
...

x′
η = α̃η

∑K1

k=1 aη,kfη,k(x),

x′
η+1 = α̃η+1

∑K1

k=1 βη+1,kaη+1,kfη+1,k(x),
...

x′
n = α̃n

∑K1

k=1 βn,kan,kfn,k(x).

(20)

Therefore we have eliminated η additional parameters. To eliminate one more parameter we
can choose one time scale parameter α̃i, say without loss of generality α̃1, and apply a time
re-scaling

t 7→ t/α̃1.

Defining new parameters α̃i/α̃1 yields the final result.

We use the planar Example (2.1) to illustrate the elimination of parameters.

Example 3.2. We continue with equations (3) from Example 2.1. Applying the definitions
of the scale parameters we find that

x′
1 = α1 (β1,1f1,1(x1;µ)− β1,2f1,2(x1, x2;µ))

x′
2 = α2 (β2,1f1,2(x1, x2;µ)− β2,2f2,2(x2;µ))

(21)

where we can immediately see from (12) that

β1,1 = β1,2 and β2,1 = β2,2.

More formally we could also define the vector β = (β1,1, β1,2, β2,1, β2,2) as in (11). The linear
system (12) is then defined by the matrix

A =

(

1 −1 0 0
0 0 1 −1

)

.

Obviously we have κ = 4, rank(A) = 2 and dim(ker(A)) = 2. Therefore the ODE (21) can
also be written as

x′
1 = α1β1,1 (f1,1(x1;µ)− f1,2(x1, x2;µ))

x′
2 = α2β2,1 (f1,2(x1, x2;µ)− f2,2(x2;µ))

(22)

which shows that for just one gain and one loss term per variable the ODEs simplify consid-
erably. As suggested in the proof of Proposition 3.1 we define

α̃i := αiβi,1.

A time re-scaling t 7→ t/α̃1 then gives

x′
1 = (f1,1(x1;µ)− f1,2(x1, x2;µ))

x′
2 = α̃2

α̃1

(f1,2(x1, x2;µ)− f2,2(x2;µ))
(23)

and a re-labeling α := α̃2

α̃1

reduces the situation to one parameter where α is a ratio of time
scales.
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We continue by interpreting the parameters βi,k. They are gain and loss ratios for each
term in the decomposition. To analyze the stability and bifurcations of the equilibrium
x∗ = 1 we define elasticities (or exponent parameters)

fi,k,xj
:=

∂fi,k
∂xj

(1) =
∂fi,k
∂xj

(x)

∣

∣

∣

∣

x=1

and find the Jacobian of (16) at x = 1

J(1) =











α1 0 · · · 0
0 α2 · · · 0
...

. . .
...

0 · · · αn

















∑K1

k=1 a1,kβ1,kf1,k,x1
· · · ∑K1

k=1 a1,kβ1,kf1,k,xn

...
. . .

...
∑Kn

k=1 an,kβn,kfn,k,x1
· · · ∑Kn

k=1 an,kβn,kfn,k,xn






. (24)

We also refer to the set of scale and exponent parameters as generalized parameters.

Example 3.3. We continue with equations (21) from Example 3.2 without considering
additional time scale parameters (i.e. we set α = 1). The Jacobian at the equilibrium is
then given by

J(1) =

(

f1,1,x1
− f1,2,x1

f1,2,x2

f1,2,x1
f1,2,x2

− f2,2,x2

)

(25)

which gives a total number of three generalized parameters.

The key input to the generalized modeling process from applications is that we can often
interpret the scale parameters and the elasticities for a given application. To explain the
term elasticities we examine their definition more closely and observe that

fi,k,xj
=

∂fi,k
∂xj

(1) =
X∗

j

Fi,k(X∗)

∂Fi,k

∂Xj

(X∗) = X∗
j

(

∂

∂Xj

lnFi,k(X)

)

X=X∗

=

(

∂

∂xj

ln fi,k(x)

)

x=1

which interprets the exponent parameters as (scaled) logarithmic derivatives. Logarithmic
derivatives are often called elasticities, particularly in the context of modeling economic
problems [10]. We can also view the exponent parameter fi,k,xj

as the sensitivity to
variations of fi,k in the direction xj at the equilibrium point [47]. If certain specific functional
forms Fi,k(X) are known from the modeling process we can get even more information (see
[15], p.49). We give a few examples using univariate functions Fi,k(X) with X ∈ R:

Fi,k(X) fi,k,x
AXq q
A exp(BXq) qBX∗

A
B+Xq −q

(

(X∗)q

B+(X∗)q

)

AXp

B+Xq

(B+(X∗)p)(Bp+(p−q)(X∗)q)
(B+(X∗)q)2

Further possible dependencies of the exponent parameters are easily derived by direct
differentiation of the given functional form.
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4 Bifurcations

Using the n×n Jacobian matrix (24) we have access to the eigenvalues and their multiplicities
at the equilibrium point x = 1 (X = X∗). One can calculate the eigenvalues λi numerically
using standard methods such as unsymmetric QR factorization [13]. If ℜ(λi) 6= 0 for all
i ∈ {1, 2, . . . , n} the Hartman-Grobman Theorem [29] implies that the flow near x = 1 is
locally topologically equivalent to the flow of the linearized system. In particular, we get
asymptotic stability if ℜ(λi) < 0 for all i. Therefore a necessary condition for bifurcation
under parameter variation is that ℜ(λi) = 0 for one (or multiple) eigenvalues. We briefly
recall how to define an unfolding of a generic bifurcating family [56, 2] as we need this
terminology throughout this section. Let F ∈ Cr(Rn,Rn) be a vector field defining the ODE
(1). The smoothness r will not be of primary relevance for us and we always assume that r
is sufficiently large in the following. Let Js

x(F ) denote the s-jet

(x, F (x), DF (x), D2F (x), . . . , DsF (x))

of F at x with s ≤ r; denote the associated space of jets by Js(Rn,Rn). The s-jet extension
F̂ of F is a map

F̂ : Rn → Js(Rn,Rn), F̂ (x) = Js
x(F )

that maps a phase space point to the associated jet; observe that we can identify the jet
space Js(Rn,Rn) with R

m for a suitable m. Let x0 ∈ R
n denote a phase space point and

let U be a neighborhood of x0 and set V := F (U); we shall restrict to studying the local
behavior of the vector field near x0 from now on. Let E ⊂ Js(U, V ) denote the codimension
n subset of those s-jets that have an equilibrium point x0 in U [56] where codimension is
defined as

codim(E) = dim(Js(U, V ))− dim(E) = m− dim(E).
Let B ⊂ E ⊂ Js(U, V ) denote the codimension n+1 set of vector fields with a non-hyperbolic
equilibrium point x0; observe that a non-hyperbolic equilibrium point is defined by conditions
on DF (x0). Consider an s-jet Js

x(F ) with a non-hyperbolic equilibrium point at x0. Then
Js
x(F ) lies in a set D ⊆ B of codimension b in Js(U, V ) for b ≥ n + 1 and we define

the codimension of the equilibrium point x0 as b − n. To understand the dynamics near
a bifurcation point in D we need a parameterized family of vector fields F (x;µ) so that
the associated family of s-jets is transverse to D. Recall that transversality of maps G ∈
Cr(Rn,Rm) to a submanifold M ⊂ R

m at G(x0) is defined by the requirement

DG(x0)Tx0
R

n + TG(x0)M = TG(x0)R
m.

The following theorem is of fundamental importance to justify the next steps. To state
the theorem we recall that a property that holds for a countable intersection of dense open
sets (i.e. on a residual set) is called generic.

Theorem 4.1 (Thom’s Transversality Theorem, [42]). Let M be a submanifold of Js(U, V ).
The set of maps F ∈ Cr(U, V ) whose s-jet extensions are transversal to M is a residual set
in Cr(U, V ) (for some r depending on s and n).
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Hence if we can find a parameterized family F (x;µ) with µ ∈ R
p which is transverse to

D then we have constructed a generic representative. However, so far we have not taken the
dynamics completely into account. Consider a vector field F ∗ with F ∗(x0, ν0) = 0. We say
that F ∗(x, ν) is induced from F (x, µ) near (x0, µ0) if there is a continuous map φ, defined
near µ0 with φ(ν0) = µ0, so that

F ∗(x, ν) = F (x, φ(ν)).

A parameterized family F (x, µ) is called a universal unfolding near an equilibrium point
(x0, µ0) if every other parameterized family of Cr vector fields is equivalent to a family of
vector fields induced by F (x, µ). In general, it is difficult to verify for many bifurcations
with higher-dimensional parameter spaces that a transversal family also forms a universal
unfolding.

Remark: Although the results described so far give a framework for the classification of
bifurcation points according to codimension there are a few subtle technical points regarding
e.g. the applicability of Thom’s Theorem 4.1 or possible re-parameterizations of time and
coordinate changes [56].

The classification of local bifurcation according to codimension [41, 24] yields the follow-
ing classification up to codimension two:

• codim = 1: Fold or saddle-node (single zero eigenvalue), Hopf (pair of pure imaginary
eigenvalues).

• codim = 2: Bogdanov-Takens (double real zero eigenvalues), Gavrilov-Guckenheimer
or fold-Hopf (single zero eigenvalue and pure imaginary pair of eigenvalues), Hopf-Hopf
(two pairs of pure imaginary eigenvalues), cusp (single zero eigenvalue and degenerate
normal form coefficient), Bautin or generalized Hopf (pair of pure imaginary eigenvalues
and zero first Lyapunov coefficient).

The eigenvalues of (24) depend on the generalized parameters so that we can detect
necessary conditions for all codimension one and two bifurcations except cusp and Bautin
bifurcation that are of codimension two as they violate codimension one non-degeneracy
conditions. We shall not aim at a complete discussion of bifurcation analysis of generalized
models but point out some features via examples.

Example 4.2. Consider the following generalized toy model

X ′ = F1(X)− F2(X) + F3(X) (26)

for X ∈ R. A possible specific model covered by (26) is

X ′ = X2 − 2X + 1− A, for A ∈ (−1, 1) (27)

where F1(X) = X2, F2(X) = 2X and F3(X) = 1 − A. It is easily checked that (27) has
two equilibria at X∗

± = 1 ±
√
A for A > 0 that undergo a non-degenerate fold bifurcation

11



at A = 0. The bifurcation diagram is shown in Figure 1(a). After the normalizing scaling
transformation X = X∗

±x we find that (27) gives two ODEs

x′ = X∗
±x

2 − 2x+
1− A

X∗
±

=: b±(x,A), for A ∈ [0, 1). (28)

0 1
0

1

2

0 1
0.9

1

1.1

0 1
0.9

1

1.1

1.5 2 2.5
0.9

1

1.1

x
x

x

X

A

A

A

(a) (c)(b+)

(b-)

β

Figure 1: Solid black curves are stable equilibria and dashed grey curves unstable equilib-
ria. (a) Fold bifurcation for the specific model (26). (b) Fold bifurcation for the re-scaled
equations (28); we plotted the two equilibrium curves at x = 1 separately to indicate that
they are associated to different branches in (a). (c) Bifurcation diagram for the generalized
model (26).

The new bifurcation diagram of (28) is given in Figure 1(b±). The fold bifurcation from
Figure 1(a) can still be recognized in Figure 1(b±) at A = 0 since

∂b±
∂x

(1, 0) = 0 and
∂2b±
∂x2

(1, 0) = 2.

The transversality condition requires looking at the parameter derivative

∂b±
∂A

(x,A) = ±x2 − 1

2
√
A

(29)

and we observe that the condition is not well-defined for (x,A) = (1, 0). The generalized
formulation of (26) is

x′ = α(β1f1(x)− β2f2(x) + (β2 − β1)f3(x)). (30)

Using a time re-scaling t 7→ t/(αβ1) and setting β := β2/β1 we get that (30) can be written
as

x′ = f1(x)− βf2(x) + (β − 1)f3(x). (31)

The associated Jacobian for (31) at x = 1 is

J(1) = f1,x − βf2,x + (β − 1)f3,x.

12



If we assume that the exponent parameters are (f1,x.f2,x, f3,x) = (2, 1, 0) as for our specific
model then we find that

J(1) = 2− β

which satisfies the necessary condition for a saddle-node bifurcation at β = 2. Since (30)
always has an equilibrium point at x = 1 we find a bifurcation diagram as shown in Figure
1(c).

From Example 4.2 we conclude that a generalized model will be able to detect the main
bifurcation conditions for eigenvalue crossings but that one has to be careful in interpret-
ing bifurcation diagrams. Furthermore, a first-order analysis will not check whether non-
degeneracy and transversality conditions are satisfied. This raises the issue of genericity for
generalized models which we address in the next example.

Example 4.3. We continue with Example 4.2 and the generalized model

x′ = f1(x)− βf2(x) + (β − 1)f3(x) =: g(x, β). (32)

We check the generalized model for genericity near a fold bifurcation. Consider the associated
1-jet space J1

x(R,R) to g with elements
(

x, g(x, β),
∂g

∂x
(x, β)

)

which is three-dimensional. The bifurcation set B for a fold bifurcation is given by

{(x, 0, 0) ∈ J1
x(R,R)}

which has dimension 1 and codimension b = 2. Therefore we get, as expected, that the fold
bifurcation has codimension b− n = 2− 1 = 1. The 1-jet extension to g : R → R is the map

ĝ(x, β) =

(

x, g(x, β),
∂g

∂x
(x, β)

)

(33)

which we view as a map from ĝ : R2 → R
3 including the generalized parameter β. The

linearization of the 1-jet extension is

Dĝ(x, β) =







1 0
∂g

∂x
(x, β) ∂g

∂β
(x, β)

∂2g

∂x2 (x, β)
∂2g

∂x∂β
(x, β)






(34)

The tangent space to B is spanned by the vector (1, 0, 0)T ∈ Tĝ(x,β)R
3; note that we can

obviously identify Tĝ(x,β)R
3 with R

3. Evaluating (34) at a fold bifurcation point (1, β0) we
know that

∂g

∂x
(1, β0) = 0.

This implies that checking transversality of the 1-jet extension (33) reduces to checking that
the 3× 3 matrix

H :=







1 0 1

0 ∂g

∂β
(1, β0) 0

∂2g

∂x2 (1, β0)
∂2g

∂x∂β
(1, β0) 0






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is non-singular. This just means

det(H) = −∂g

∂β
(1, β0) ·

∂2g

∂x2
(1, β0) 6= 0.

This recovers the well-known [41] non-degeneracy conditions

∂g

∂β
(1, β0) 6= 0 and

∂2g

∂x2
(1, β0) 6= 0. (35)

Recall that if (35) holds then the unfolding is indeed universal in β [24, 41]. Only the last
step of the genericity analysis has to be adapted to the generalized model. In particular, we
can plug in the structure of the model (32) into (35) which yields the conditions

∂g

∂β
(1, β0) = −f2(1) + f3(1) 6= 0,

∂2g

∂x2 (1, β0) = ∂2f1
∂x2 (1)− β0

∂2f2
∂x2 (1) + (β0 − 1)∂

2f3
∂x2 (1) 6= 0.

(36)

The conditions (36) restrict the function space for which one can expect that the generalized
model has a fold bifurcation with a universal unfolding. The examples have also demon-
strated that known results about bifurcations and unfoldings carry over easily to generalized
models.

Even if the unfolding is not universal (e.g. if we had chosen a function space in Example
(4.3) with f2(1) = f3(1)) then we can often use the availability of additional parameters as
the next example illustrates.

Example 4.4. Consider a planar generalized model

x′
1 =

∑K1

k=1 a1,kβ1,kf1,k(x),

x′
2 =

∑K2

k=1 a2,kβ2,kf2,k(x),
(37)

where we assume that the time scales are all equal to 1 for simplicity. Suppose (37) has a Hopf
bifurcation at (x, β1,1) = (1, β∗

1,1) so that the Jacobian J(1) has a complex conjugate pair of
eigenvalues. There are two non-degeneracy conditions [41]. The transversality condition is

f1,1(1) 6= 0. (38)

This condition is generically satisfied if we let f1,1 ∈ Cr(R2,R) for some fixed r ≥ 0; indeed,
in this case maps f1,1 that satisfy (38) form a residual set in the Cr topology. The second non-
degeneracy condition is that the first Lyapunov coefficient l1 is not equal to zero [40]. The
condition can be written in terms of the partial derivatives with respect to x1,2 up to third
order. The scale parameters β1,k or β2,k appear as coefficients in the linear combination as
they are multiplicative prefactors. Therefore we have l1 6= 0 generically in a sufficiently large
space of scale parameters i.e. we obtain conditions analogous to (36) but with additional
parameters. Hence additional generalized parameters can often compensate for a restricted
choice of functions fj,k.

The previous two examples illustrate the main aspects of the genericity question for
generalized models:
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1. We can check for a given decomposition and given function spaces whether the non-
degeneracy conditions for a bifurcation are satisfied.

2. The checking depends crucially on the underlying mathematical modeling and how the
functions and decomposition are chosen.

3. Higher-order terms have to be taken into account that are not parameterized by scale
parameters and elasticities; see also [59].

We have seen that the scale parameters are relatively easy to understand. The elasticities
are bit more complicated as the next example illustrates.

Example 4.5. In principle, we can also just vary the elasticities and treat them as bifurcation
parameters. The obvious caveat is that this might not yield a smooth family of functions
everywhere in phase space. For example, if

Fi,k(X) = A(X − B)p, for p > 0 (39)

where A,B are parameters, then Fi,k is C
∞ for X 6= B but only Ck for some finite k if p 6∈ N.

This can again lead to violations of non-degeneracy conditions for bifurcations as in Example
(4.2). In particular, as shown in [39], we will not be able to conclude quantitative universal
scaling laws near bifurcations if we do not restrict the functions Fi,k to be sufficiently smooth.
Note that this phenomenon is again non-generic for a sufficiently large parameter space. The
second key observation for elasticities relates to the form of fi,k. For (39) we find

fi,k,x =
pX∗

X∗ − B
(40)

which depends on the equilibrium point location X∗. The best way to interpret (40) is
asymptotic knowledge about X∗; for example, we have

X∗ ≫ 1, B = O(1) ⇒ fi,k,x ≈ p,
X∗ ≈ B, X∗ = O(1) ⇒ fi,k,x ≫ 1,
0 < X∗ ≪ 1, B = O(1) ⇒ fi,k,x ≈ 0.

where O(1) indicates a fixed constant independent of any asymptotic limits of X∗.

The last example shows that it can be beneficial to restrict the class of functions consid-
ered in a generalized model to a certain class, e.g. smooth functions, polynomials or certain
functionals particular to the application area [15]. The important conclusion of all previous
examples is that generalized models produce information that “scales with the input”. The
more knowledge from the modeling process is available, the more detailed information about
the dynamics can be derived.

We conclude this section by mentioning an important practical issue. We have to address
how to find bifurcations and their associated varieties (such as surfaces, lines, curves, etc.)
in parameter space. A direct method calculates the eigenvalues and uses iteration to find
the zeros of real parts. An indirect method employs so-called test functions that vanish
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once a certain type of eigenvalue crossing occurs; see [14] or [41] for an overview of different
test functions and references to the literature. We note that analytical methods such as
the method of resultants [26, 25] have also been employed successfully in the context of
generalized modeling [20] using computer algebra [19]; having an explicit formula for the
bifurcation loci can be beneficial for visualization [51]. Section 6.2 illustrates the search for
bifurcations in generalized models with an example.

5 Beyond ODEs

Although we presented the ideas of generalized modeling only in the context of ODEs so far,
it is evident that their scope is much broader. Recall that the key ideas are:

• There exist unknown functional forms in the model.

• Group the different parts of the vector field into gain and loss terms.

• Introduce a normalizing coordinate change for an equilibrium point.

• Re-scale the gain and loss terms and introduce scale parameters.

• Linearize at the new equilibrium x = 1 and introduce elasticities.

• Interpret the generalized parameters and assign suitable ranges.

• Use tools from bifurcation analysis to capture the dynamics.

These ideas carry over naturally into a much wider setup than just ODEs. Generalized
models for discrete dynamical systems (iterated maps) are discussed in [38]. Many other
mathematical evolution equations are very similar to ODEs. In particular, the notion of
equilibrium point, coordinate changes or re-scaling as well as linearized analysis carry over.
In this section we shall demonstrate this observation for certain classes of partial, functional
and stochastic differential equations.

5.1 Partial Differential Equations

We have seen in Section 2 that generalized models provide a tool to analyze the dynamics of
ordinary differential equations. A class of partial differential equations (PDEs) that can be
analyzed by dynamical systems techniques is given by (semilinear) parabolic equations. Let
(x, t) ∈ Ω×R

+ where Ω ⊂ R
n is a domain and let u = u(·, t) ∈ X for all t ≥ 0 where X is a

suitable Banach space e.g. X = Lp(Ω); for details see [32]. Consider the abstract evolution
equation

∂u

∂t
+ Au = F (x, t, u;µ) (41)

where F : Ω× R
+ ×X × R

p → R
n and A is a sectorial (differential) operator on X [32]. A

concrete example for (41) are initial boundary value problems for reaction-diffusion PDEs
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[35] of the form
∂u
∂t

−D∆u = F (x, t, u;µ) for x ∈ Ω, t > 0
u(x, t) = g(x, t) for x ∈ ∂Ω, t > 0
u(x, 0) = h(x) for x ∈ ∂Ω

(42)

for g : Ω × R
+ → R

n, h : Ω → R
n, ∆ is the Laplacian and D is a diagonal matrix

called the diffusion matrix with non-negative elements. We shall restrict our presentation of
generalized models here to (42) but remark that the ideas naturally extend to many other
equations within the class (41). Assume that F can again be decomposed into gain and loss
terms

Fi(u, x, t) =

Ki
∑

k=1

ai,kFi,k(u, x, t).

where we omit the parameters µ ∈ R
p again for notational convenience. Note that this

assumption is very natural in the context of reaction-diffusion systems since F represents
the reaction terms. For example, if we think of a chemical reaction then gain terms would be
terms that increase a concentration while loss terms decrease it. Suppose (42) there exists a
constant function u∗ such that

u∗(x, t) = (u∗
1, . . . , u

∗
n), , u∗

i ∈ R, u∗
i 6= 0,

for all t > 0. Then u∗ is a space-time homogeneous equilibrium solution to (42). We can
apply the normalizing coordinate change

vi :=
ui

u∗
i

, for i ∈ {1, 2, . . . , n}.

Then the reaction-diffusion system (42) transforms to

∂vi
∂t

− αiD̃ii∆vi =
Fi(x,t,v1u∗

1
,...,vnu

∗

n)

u∗

i

=: αi

∑Ki

k=1 ai,kβi,kfi,k(x, t, v), x ∈ Ω, t > 0

vi(x, t) = gi(x,t)
u∗

i

=: g∗i (x, t), x ∈ ∂Ω, t > 0

vi(x, 0) = hi(x)
u∗

i

=: h∗
i (x), x ∈ ∂Ω

(43)

where the usual generalized modeling definitions as in (16) are used and the diffusion matrix
has been rescaled D̃ii = Dii/αi. Then (43) has a space-time homogeneous equilibrium at
v = (1, 1, . . . , 1) =: 1. Now all linearization techniques at v = 1 for (43) can make use of
the interpretation of scale parameters and elasticities as before. As a typical example one
can consider the Turing-Hopf mechanism [35]. Let J(1) denote the Jacobian as in (24). If
J(1) has only eigenvalues λ = λ(k) with ℜ(λ) < 0 then the equilibrium v = 1 is stable as
a solution to v′ = J(1)v. The Turing-Hopf bifurcation requires that some eigenvalue of the
Laplacian has ℜ(λ(k)) > 0 for some k ≥ 1 which results in a spatial instability and associated
pattern formation. Explicit conditions for this scenario to occur can then be derived in terms
of the generalized parameters and the rescaled diffusion coefficients [4].

5.2 Delay Differential Equations

Consider a delay differential equation (DDE) with constant delays tl, l ∈ {1, 2, . . . , m}, given
by

X ′ = F (X(t), X(t− τ1), X(t− τ2), . . . , X(t− τm);µ) (44)
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where F : R(m+1)n × R
p → R

n and we abbreviate X(t − τl) as Xτl ; see also [33]. As for
PDEs, we remark that (44) only presents a subclass of DDEs as it is non-neutral with
constant delays [28] and we expect generalized modeling to apply for many more DDEs than
just (44). Suppose there exists an equilibrium point X = X∗ so that

F (X∗, X∗, . . . , X∗;µ) = 0.

Applying the usual generalized modeling procedure we end up with

x′
i = αi

(

Ki
∑

k=1

ai,kβi,kfi,k(x)

)

(45)

where the scale parameters are defined as usual and

fi,k(x) =
Fi,k(X

∗ · x,X∗ · xτ1 , . . . , X∗ · xτn)

X∗
i

.

The linearized equation for (45) around x = 1 is

v′ =
m
∑

l=0

Alv
τl (46)

where the n× n matrices Al consists of the rows

αi

(

Ki
∑

k=1

ai,kβi,k

m
∑

l=0

(Dlfi,k)(1)

)

and where Dl denotes the total derivative of fi,k with respect to the l-th argument; note
that we have employed the convention τ0 = 0 so that l = 0 denotes the first argument. The
characteristic equation associated to (46) is obtained by assuming an exponential solution
of the form eλt and is given by

det

(

λId−
m
∑

l=0

e−λτlAl

)

= 0. (47)

In contrast to ODEs, we see that (47) is a transcendental equation which can have an infinite
number of solutions λ. It is known that if ℜ(λ) < 0 for every solution then the solution is
stable. Bifurcation analysis for (47) can then be carried out using numerical [7] or analytical
[9] methods. The generalized parameters are used as bifurcation parameters in this context.

5.3 Stochastic Differential Equations

Consider a system of stochastic differential equations (SDEs) [43]

dX = F (X ;µ)dt+G(X ;µ)dW (48)

where W = W (t) = (W1(t),W2(t), . . . ,Wk(t))
T is a k-dimensional Brownian motion, F :

R
n → R

n, G : Rn → R
n×k is a matrix-valued function. The normalizing coordinate change
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(5) can be applied to (48) for a deterministic equilibrium F (X∗) = 0 with X∗
i 6= 0 for all

i ∈ {1, . . . , n}. Since the coordinate change is linear the Itô formula [11, 37] reduces to the
standard chain rule and we get

dxi =
Fi(X1x1, . . . , Xnxn;µ)

X∗
i

dt+
1

X∗
i

Gi(X1x1, . . . , Xnxn;µ)dW, for i ∈ {1, 2, . . . , n}

whereGi indicates the i-th row ofG. The scale and exponent parameters for the deterministic
drift terms Fi(X ;µ)/X∗

i can be defined as in Section 3. We can also consider a normalized
matrix-valued function for the diffusion term where each row is given by

gi(x;µ) :=
Gi(X1x1, . . . , Xnxn;µ)

X∗
i

.

Then we can still formally linearize (48) at x = 1 and obtain to lowest order

dξ =

(

∂

∂xj

Ki
∑

k=1

fi,k(x;µ)

∣

∣

∣

∣

∣

x=1

)

i,j

ξdt+ g(1;µ)dW (49)

where ξ = ξ(t) now solves an SDE with linear drift term and constant diffusion. There are
multiple possibilities on how to develop a “stochastic bifurcation theory” [34, 1]. Therefore
we shall not discuss generalized modeling for SDEs in any more detail. However, we expect
generalized models for SDEs to work for bifurcation and stability analysis as well.

6 Applications

In this section we briefly outline some of the applications of generalized modeling and high-
light some of the major results. A comprehensive list of references for other applications is
[20, 21, 22, 4, 52, 58, 51, 55, 18, 17, 16, 33, 49, 48, 57, 45, 3, 12]. For each example we focus
on a different aspect of generalized modeling. In Section 6.1 we explain how to interpret
the generalized parameters. In Section 6.2 we consider a generalized model for epidemics
and illustrate how the computation of bifurcation surfaces in parameter space can be used
for analysis. In Section 6.3 we illustrate the importance of equilibrium stability and how
sampling-based methods can be used to understand large classes of mathematical models.

6.1 Dynastic Cycles

One problem considered in [20] describes the periodic behavior in a socio-economic setup
with a focus on the transitions between despotism and anarchy that are called dynastic cycles
[54]. The society is assumed to consist of farmers X , bandits Y and rulers Z. The ODEs
are

X ′ = S(X)− C(X, Y )− T (X,Z)
Y ′ = ηC(X, Y )− L(Y, Z)−M(Y )
Z ′ = νC(X, Y )−R(Z)

(50)

where S(X) is growth of the farmer population, C(X, Y ) is loss due to crime, T (X,Z) is loss
due to taxes, L(Y, Z) is the loss of bandits due to ruler intervention, M(Y ) is loss of bandits
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due to mortality or retirement and R(Z) is the loss of rulers due to the same factors. The
generalized model associated with (50) can be written as

x′ = αx(s(x)− β1,2c(x, y)− β1,3t(x, z))
y′ = αy(c(x, y)− β2,2l(y, z)− β2,3m(y))
z′ = αz(c(x, y)− r(z))

(51)

where the functions have been normalized as in (7) and the parameters are given by

αx :=
S∗

X∗
, αy :=

ηC∗

Y ∗
, αz :=

νC∗

Z∗

and

β1,2 :=
C∗

S∗
, β1,3 :=

T ∗

S∗
, β2,2 :=

L∗

ηC∗
, β2,3 :=

M∗

ηC∗
.

As examples for the interpretation of the scale parameters we consider β1,3 and β2,2. The
parameter β1,3 describes the ratio of loss of farmers via taxes in comparison to their natural
growth/birth process. Alternatively we can also write β1,3 = T ∗/S∗ = T ∗/(αxX

∗) which
interprets β1,3 as the loss due to taxes per unit time normalized by the total number of
farmers. The parameter β2,2 can be interpreted as the probability that a bandit is caught
before reaching retirement age. Similar interpretations can be found for the other scale
parameters and this allows us to assign the parameters ranges of values. The elasticities are
defined as

sx :=
∂s

∂x
(1), cy :=

∂c

∂y
(1, 1), etc.

We can interpret sx as the sensitivity of the farmer’s growth rate with respect to their
number in the steady state. If land is available in abundance then the growth rate could
be modeled as some linear function and we get sx = 1. However, if the growth rate is
entirely determined by the availability of land then the growth rate is completely insensitive
to the number of farmers and we would get sx = 0. Similar considerations can be used to
interpret all the elasticities. Using a standard bifurcation analysis [20] one finds that one of
the main bifurcation parameter that determines the stability of the system (51) is sx and
that a limited availability of land promotes stability. Stability of the equilibrium can be lost
under the variation of sx in a Hopf bifurcation that leads to dynastic cycles

6.2 Epidemics

Consider a classical two-component predator-prey model with predator population Y and
prey population X . In [50, 53] the dynamics of this system is analyzed under the assumption
that the predator suffers from an epidemic with SIRS dynamics. The model is given as follows

X ′ = SX −G(X)(YS + YR + αYI)−MXX
2

Y ′
S = EG(X)(YS + YR + αβYI)−MY YS + δYR − Λ(YS, YI)

Y ′
I = Λ(YS, YI)− (MY + µ)YI − γYI

Y ′
R = γYI − δYR −MY YR

(52)

where YS, YI and YR are susceptible, infected and recovered predators. Note that (52) has
some unknown functional forms such as the incidence/interaction Λ(YS, YI) between the
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susceptible and infected parts of the population. The equations also contain some specific
functions such as MXX

2 which describes the limiting growth factor of the prey due to
intraspecific competition. The generalized model for (52) can be written, using the notation
of [50, 53], as

x′ = αx[x− (1−mx)g(x)((1− fα)(bys + (1− b)yr) + fαyi)−mxx
2]

y′S = αs[esg(x)((1− fβ)(bys + (1− b)yr) + fβyi)
−myys + (1− es)yr − (1−my)l(ys, yi)]

y′I = αi[l(ys, yi)− yi]
y′R = αr[yi − yr]

(53)

where αx,s,i,r are time scales and b, fα, fβ , es, mx, my are scale parameters. We also define

gx :=
∂g

∂x
(1), li :=

∂l

∂yi
(1, 1), li :=

∂l

∂yi
(1, 1)

as exponent parameters. The bifurcation conditions for (53) with respect to eigenvalues of
J(1) can then be investigated.

Figure 2: Re-printed with permission from [50]; see also [53]. The red surface indicates
Hopf bifurcation and the blue surface saddle-node bifurcations. Higher co-dimension bifur-
cations are indicated by separate labels. The main codimension two curves are Gavrilov-
Guckenheimer (GG), Takens-Bogdanov (TB) and double-Hopf (DH) bifurcations.

Figure 2 shows a good example what type of information we can obtain focusing on the
elasticities; the scale parameters have been fixed to biologically reasonable values [50]. The
three-dimensional bifurcation diagram shows codimension one bifurcation surfaces (fold and
Hopf) as well as codimension two curves (Gavrilov-Guckenheimer, Takens-Bogdanov and
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double-Hopf) and codimension three points (1 : 1 resonance, triple point [41, 14]). Although
not all the unfoldings of the higher-codimension bifurcations are known it often suffices to
detect the bifurcation point as an organizing center to gain insight into the overall dynamics.
For example, parts of the double-Hopf bifurcation are known to generate chaotic dynamics
due to associated torus and homoclinic bifurcations [24]. Although we cannot conclude
chaotic dynamics for the scale parameters chosen in Figure 2 we can conclude that varying a
sufficiently large number of them we expect chaotic dynamics to occur generically for many
specific models derived from (52).

6.3 Food Webs

The underlying question addressed in [22] is what factors stabilize a food web. The model
considers the evolution of N population densities Xi given as

X ′
i = Si(Xi) + Fi(X1, . . . , XN)−Mi(Xi)−

N
∑

j=1

Gij(X1, . . . , XN) (54)

where Si is the gain due to primary production, Fi is the gain due to predation, Mi is the
loss due to natural mortality and Gij is the loss due to predation. The equations (54) are
a natural candidate to apply generalized modeling since one might have some information
about the unknown functional forms but it might be too restrictive to just consider a single
specific model. For the definitions and interpretations of the generalized parameters we refer
to [22]. The interactions between the different specifies are described by the coupling terms
Fi and Gij. Now one can analyze the stability of food webs with the following basic steps:

(1) Consider a set of generalized parameters.

(2) Sample one food web (i.e. the predator-prey interaction links and their strength).

(3) Check whether the equilibrium point x = 1 is stable.

To draw conclusions from this approach the steps (2)-(3) were repeated for 108 food
webs for a fixed number of species. The network was assumed to consist of one connected
component and contains no double links or loops. The correlation of a parameter p with
stability was defined by

R :=

∑

l=1 νsps,l − νs
ν

∑ν
l=1 pl

νσpσs

where ps,l is the sets of parameters giving rise to stable webs, pl is the entire set of parameter
values considered, ν is the number of elements in {pl}, νs is the number of elements in {ps,l},
σp is the standard deviation of p and σs is the standard deviation of the stability with sl = 1
for a stable web and sl = 0 for an unstable one. The value of R and the interpretations of the
generalized parameters can then be used to conclude what properties promote or diminish
food web stability i.e. which properties are positively or negatively correlated to stability.
In addition, the topology of the food web has been investigated by varying the number of
species N ; for example, the relation between the number of links L and the number of species
has been considered. The main results are:
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• Higher variability in link strength stabilizes small food webs but destabilizes large ones.

• Stability scales as a power law with the number of species and their connectance.

• Stability is enhanced by high trophic level species feeding on multiple prey species and
also by intermediate level species being fed upon by multiple predators.
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